物联网全面引爆下的罗姆半导体

分享到:

当前物联网科技高速发展,各国纷纷抢占发展制高点,各大科技巨头一齐抢滩布局产业链,风起云涌之状,堪比身处物联网的“战国时代”。然而喊了这么多年的物联网口号,许多产品仍然处于初级阶段,物联网应用领域过于“碎片化”难真正爆发,“唱衰”声音也此起彼伏。

 

物联网时代即将引爆
 
随着物联网规划被纳入到“十二五”的专题规划中,物联网也被列为国家重点战略性新兴产业之一,国家政策的颁发也进一步的推动了物联网向前快速奔跑。同时,刘克振也表示,通信业的高度投入也催生了物联网加速成熟。
 
中国电信、中国移动、中国联通三大运营商积极布局下一代物联网络。中国联通总经理陆益民之前曾表示,中国联通目前已实现300个城市的NB-IoT连接服务,为促进物联网产业发展,还专门成立了100亿产业基金来推动。而除了中国联通之外,中国电信和中国移动也在大规模地建设物联网。
 
7
 
ROHM与清华大学在VLSI国际研讨会上发布了可用于物联网的非易失片上系统
 
无线传感网节点(WSN)是实现物联网的关键部件。采用从环境中采集的能量(如太阳能)对WSN供电,可免去频繁更换电池或需使用电源线带来的极大不便。因此,基于利用能量采集来实现无电池WSN的技术被业界寄予厚望。但是,基于目前环境能量采集技术所能获得的能量,通常无法满足传感网节点长时间连续不断的运行(包括数据采集、处理及传输),而且环境能量采集也容易受到环境变动影响。对该问题通常的解决方法是通过控制WSN节点使物联网间歇性工作,从而减少运行时间以达到降低其整体运行能耗的目的。实现物联网间歇性工作需要不断地开启和关断WSN节点,因此,如何提高每次开启和关断的速度和降低这期间需要的能耗,对系统的稳定运行也就变得至关重要。
 
8
 
在使用铁电的非易失性存储器(Fe-RAM)技术方面,多年来ROHM为了实现断电后仍能保留数据,进行了多种尝试,希望达到一接通电源,就能以极少的能耗快速恢复数据的效果。一方面,ROHM不仅将这类非易失性存储器的优势应用于外部存储器Fe-RAM上,同时也应用在处理器内的逻辑电路,以推进开发可大大减少电源开关前后数据保护相关处理过程的"非易失处理器(Nonvolatile processor)。另一方面,多年来清华大学针对在未来基础设施的管理、医疗等众多领域上重要性日益凸显的WSN做了大量研究。在2012年清华大学和ROHM共同举办的"清华-ROHM国际产学连携论坛(TRIFIA)"上,双方对各自的技术前景和重要性进行了评估,并开始合作进行针对利用非易失处理器技术、基于环境能量采集的无线传感器网络的相关研究。该研究已取得一定成果,曾在计算机体系结构领域具有代表性的国际会议-- High Performance Computer Architecture 2015上荣获最佳论文奖。 在本次研讨会上发表的论文中提出的"非易失片上系统(NVSoC)",是由清华大学刘勇攀副教授团队与ROHM共同合作完成,迄今为止集成度最高的非易失计算芯片。该芯片通过集成快速唤醒、自适应电源模式切换、非易失外设控制器等电路技术,大幅度提升了非易失计算芯片在物联网应用中的运行速度和能量效率。与上一代非易失计算芯片相比,NVSoC将系统级启动速度提升了3.9倍,同时取得了11倍的能量效率提升。该成果将加快非易失计算芯片在物联网、健康监测、智能安防等领域中的大规模应用。
继续阅读
【技术干货】提升能源利用效率的住宅储能解决方案

电池储能(ESS)解决方案除了应用于工业、发电之外,在家庭住宅部分,也成为当前应用与市场发展的关键。住宅的ESS解决方案所需的功率较小,但对转换效率与安全性的要求,仍与工业应用相同。本文将为您介绍住宅ESS解决方案的市场趋势,以及艾睿电子与Rohm推出的SiC相关解决方案的功能特性。

BMS低边驱动:原理揭秘、技术创新与未来展望

BMS中的低边驱动原理主要控制电池负极端的通断,通过功率MOSFET和相关控制电路确保电池充放电过程的安全与高效。其设计简单、成本低廉,但通信时需隔离措施。未来,低边驱动将更智能化、集成化,注重安全性与能效优化,同时模块化、标准化也将成为发展趋势,以适应BMS市场的不断扩大和多样化需求。

高边驱动革新:BMS性能提升的关键所在

随着电动汽车和储能系统的快速发展,BMS中高边驱动的性能要求日益提升。未来,高边驱动将朝更高精度、更稳定及智能化的方向发展,通过集成先进传感器和算法实现精细充放电控制,并与其他系统协同工作提升整体效率与安全性。新材料和新工艺的应用将推动高边驱动技术创新,提高效率和可靠性。安全性和可靠性始终是核心,需加强安全防护和可靠性设计。

BMS高边驱动:原理揭秘与应用挑战探析

BMS作为电池管理的重要部分,高边驱动是其关键组件,通过控制电池正极开关实现充放电过程的精确控制。高边驱动需应对电池复杂特性、高电压大电流挑战,并解决散热和电磁干扰问题。同时,高边驱动设计需考虑电池包与ECU共地问题,确保通信正常。高边驱动的性能直接影响电池系统整体运行效果,需不断优化设计以满足电池管理需求。

反馈光耦经典连法揭秘,创新引领未来!

反馈光耦通过光电转换实现电路的稳定可靠反馈控制,在电机控制、开关电源、通信和计算机等领域有广泛应用。未来,反馈光耦将朝着高速化、高精度化和智能化方向发展,以满足不断提升的数据传输和测量控制需求,同时融入智能化系统提升系统稳定性。