搜索
热搜: ROHM 模拟 车载
查看: 2169|回复: 9

[分享] 解读开关转换器、稳压器的整体效率

  [复制链接]

该用户从未签到

2384

主题

9837

帖子

0

精华

论坛元老

最后登录
2024-4-23
发表于 2019-12-20 14:06:24 | 显示全部楼层 |阅读模式
线性稳压器可能无法达到开关转换器或稳压器的整体效率,但其仍具有自身的优势,在输入和输出电压差降低时,稳压器能效就会升高。当输入电压刚刚高于输出电压值时,线性稳压器的能效接近 95% 至 99%。

这种特征表明在特定应用中的线性稳压器整体效率要高于仅做简单直接比较而得出的结果。因此务必考虑产品工作期间内电池的完整放电特性,并确定该段时间内的平均效率以获得精确数值(图 1)。






图 1:使用三节 AA 型碱性电池(100 mW 恒定功率负载)的系统中线性稳压器能效与电池电压之间的关系;请注意稳压器能效如何随着电压下降而升高。(图片来源:Maxim Integrated)


尽管电池满电量时能效约为 73%,但整个放电周期内的平均能效为 85%。应该将此数值与开关稳压器等效数据进行比较,因为开关稳压器电池效率不会随着电压下降而升高。


再看一下图 1,我们会发现在 20 小时后,尽管电池仍有一些电量,但由于输入和输出电压差太小,以至于该器件无法调节电压,继而停止工作。电池实际为产品供电的总累积电量为:


平均调节效率 × 停止供电前的电池能量使用百分比 =
85% × 80% = 68%。
选择较低压差特性的 IC 确保耗尽更多的电池电量,从而提高效率。


“压差”是指调节停止前输入和输出电压的差值。如图 1 示例所示,如果线性稳压器更换成具有更高压差的器件(3.4 至 3.0 伏),电池可以多使用 2.5 小时,电池能源利用率将提高至:
85% × 90% = 76.5%


仔细查看制造商提供的规格书,因为一些所谓的“低压差”(LDO) 器件的输入/输出压差十分大。这意味着停止工作前,电池中仍含有很多电量。请注意,压差可能随负载电流变化而变化。


LDO 选择与实现

对于希望在特定应用中选择使用 LDO 以便充分利用线性稳压器优势的设计工程师来说,很可能会在市场上纷繁芜杂的选择面前不知所措。虽然外观简洁,但一般的 LDO 规格书除基本的规格表通常还有二十、三十甚至更多性能图。这些图展现了静态和动态性能以及在不同工作场景和条件下的功能。


在针对便携式应用的 LDO 器件中,有许多器件适合于宽输入和输出电压范围。一些具有固定输出电压、一些具有用户可调节输出电压、一些可以提供负输出轨。一些 LDO 较为通用并具有备用电源,而其他一些 LDO 针对特定应用领域专门优化了一个或多个参数。以下几个示例展示了市面上 LDO 的多样性。


汽车:Maxim Integrated MAX16910 是用于汽车应用的 200 mA 超低静态电流LDO。
除了具备基本性能,该器件还适用于要求严苛的汽车应用环境。具有 +45 伏的抗瞬变输入电压,可以应对“负载突降”状况并在该状况下工作,还可工作于(指定值)-40°C 至 +125°C 的汽车温度范围(图 2)。在 +3.5 伏至 +30 伏的输入电压下工作,仅消耗 20 微安 (µA) 空载静态电流,在用户控制关断模式下仅为 1.6 μA。



图 2:Maxim Integrated 的 MAX16910 十分引人注目,因为它符合质保功能中严苛的汽车规定,并可在 -40°C 至 +125°C 的温度范围内正常工作。(图片来源:Maxim Integrated)


负电压:负电压设计可不仅仅是反向连接转换器,还涉及到接地参考问题以及其他拓扑问题。因而,需要特定的负电压型 LDO。analog Devices 的 ADP7183 具有负输入/输出电压以及超低噪声特性(图 3)。


这些 IC 在 −2.0 伏至 −5.5 伏的输入电压下工作,最高提供 −300 毫安 (mA) 的输出电流。该器件提供 15 种 −0.5 伏至 −4.5 伏的固定输出电压选择,或具有在 −0.5 伏至 −VIN + 0.5 伏范围内可调节的输出电压。此外,输出噪声在 100 Hz 至 100 kHz 时仅为 4 μVRMS,噪声谱密度在 10 kHz 至 1 MHz 时为 20 nV/√Hz。最后,典型电源抑制比 (PSRR) 在 10 kHz 时为 75 dB;100 kHz 时为 62 dB;1 MHz 时为 40 dB。

图 3:Analog Devices 的 ADP7183 系列实际上经常用于负电源/负输出应用;这些器件可以配置为固定输出电压(这里指上面示意图中的 −3.3 伏)或用户可调节输出电压(这里指下面示意图中设置的 −2.5 伏)。(图片来源:Analog Devices)
固定/可变双输出:通常情况下,一些应用不仅仅需要一个单通道 LDO,因此 Texas Instruments 推出具有一个 2.5 伏固定输出电压和一个可调节输出电压的 LFC789D25 双通道线性控制器。控制器的输出可以驱动外部 N 沟道 MOSFET,因此电流可能相对较高,达 3 A(典型值)。这种 IC 适用于 DDR1 存储器电压 (VDDQ) 和缓冲器 VREF 等应用(图 4)。内部基准的温度补偿性能具有 2% 容差,足以满足这种情况。

图 4:Texas Instruments 的 LFC789D25 双路线性控制器具有一个固定输出电压和一个可调节输出电压,可以满足 DDR1 和类似存储器阵列等重要应用领域的需求。(图片来源:Texas Instruments)。


近乎为零的静态电流:对于电池供电型应用而言,珍惜使用可用的能量对于实现续航时间目标至关重要,richtek RT9069
系列具有 2 µA 的超低静态电流 (Iq)。使能引脚可以让这些 IC 处于深度休眠状态,此时的静态电流为零。
这些 LDO 在 3.5 伏至 36 伏的宽输入电压范围下工作提供高达 200 mA 的电流。它们提供 2.5、3.3、5、9 或 12 伏固定输出电压。这些 LDO 在整个输入电压范围和输出电流范围内保持性能稳定,除了大多数 LDO 最需要的标准输入滤波电容器外,只需使用一个单一陶瓷输出电容器(图 5)。



图 5:Richtek RT9069 系列旨在将高度受限的电池供电型应用的续航时间最大化,它们具有 2 µA 的静态电流,且当处于禁用状态时静态电流为零。(图片来源:Richtek Technology Corp.)


充分利用 LDO

虽然 LDO 操作简单,但仍需重视一些基本的指导原则,以充分利用其优势并避免潜在损害。它们存在一些实际设计问题,如热问题和封装、布局注意事项以及噪声拾取。
对于热问题,关键是研究规格书中有关安全工作区和降额的表格和图形(图 6)。

图 6:对于 LDO 来说,安全工作区的最大允许输出电流与输入输出电压差的幅值成反比;根据图中标准 SO-8 和专有 8 引脚 µMAX 封装之间的差异所示,封装类型也十分关键。(图片来源:Maxim Integrated)


降额是一种多变量函数,包括 LDO 封装。5 引脚 SOT-23 封装的典型额定耗散超过 500 mW,而一些裸焊盘的额定值是该数值的四倍。如果 LDO 位于具有充足气流的最佳位置和/或低阻抗热路径,将可以直接使用供应商数据来确定因自发热而造成的降额性能。


总结线性稳压器的优势在于,直流输出中产生的噪声极少,输出非常“干净”,但是能效比开关转换器低很多,不能像开关稳压器一样实现高于输入电压的升压输出。
回复

使用道具 举报

该用户从未签到

16

主题

2093

帖子

0

精华

金牌会员

最后登录
2024-4-25
发表于 2020-3-24 01:10:00 | 显示全部楼层
谢谢分享
回复

使用道具 举报

该用户从未签到

1347

主题

6657

帖子

0

精华

论坛元老

最后登录
2020-7-26
发表于 2020-3-24 09:16:02 | 显示全部楼层
学习学习新技术 luomu.png
回复 支持 反对

使用道具 举报

该用户从未签到

2384

主题

9837

帖子

0

精华

论坛元老

最后登录
2024-4-23
 楼主| 发表于 2020-3-27 14:40:02 | 显示全部楼层
回复 支持 反对

使用道具 举报

该用户从未签到

1347

主题

6657

帖子

0

精华

论坛元老

最后登录
2020-7-26
发表于 2020-6-13 11:48:24 | 显示全部楼层
学习学习新技术
回复 支持 反对

使用道具 举报

该用户从未签到

1347

主题

6657

帖子

0

精华

论坛元老

最后登录
2020-7-26
发表于 2020-6-13 11:48:48 | 显示全部楼层
学习学习新技术
回复 支持 反对

使用道具 举报

该用户从未签到

1347

主题

6657

帖子

0

精华

论坛元老

最后登录
2020-7-26
发表于 2020-6-13 11:49:14 | 显示全部楼层
学习学习新技术
回复 支持 反对

使用道具 举报

该用户从未签到

1347

主题

6657

帖子

0

精华

论坛元老

最后登录
2020-7-26
发表于 2020-6-13 11:49:34 | 显示全部楼层
学习学习新技术
回复 支持 反对

使用道具 举报

该用户从未签到

1347

主题

6657

帖子

0

精华

论坛元老

最后登录
2020-7-26
发表于 2020-6-13 11:49:51 | 显示全部楼层
学习学习新技术
回复 支持 反对

使用道具 举报

该用户从未签到

1347

主题

6657

帖子

0

精华

论坛元老

最后登录
2020-7-26
发表于 2020-6-13 11:50:22 | 显示全部楼层
学习学习新技术
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 注册/登录

本版积分规则

关闭

站长推荐上一条 /2 下一条

Archiver|手机版|小黑屋|罗姆半导体技术社区

GMT+8, 2024-4-25 13:38 , Processed in 0.116398 second(s), 22 queries , MemCache On.

Powered by Discuz! X3.4

Copyright © 2001-2024, Tencent Cloud.

快速回复 返回顶部 返回列表