传感器+氧=?

标签:传感器
分享到:

       换能器是一个设备转换从一种形式的能量到另一个。一般的换能器转换信号在一种形式的能量到另一个的信号。换能器通常用于自动化,测量和控制系统的边界,在这些边界中,电信号与其他物理量(能量,力,扭矩,光,运动,位置等)相互转换。将一种形式的能量转换为另一种形式的过程称为转导。

 

       传感器则是接收并响应来自物理系统的信号或刺激物的换能器。它产生一个信号,该信号表示有关系统的信息,该信号由某种遥测,信息或控制系统使用。有源传感器需要外部电源进行操作,这称为激励信号。信号被传感器调制以产生输出信号。例如,一个热敏电阻不会产生任何电信号,而是通过使电流通过它,它的电阻可通过检测在当前或变化来测量电压横跨热敏电阻。

 

       相反,无源传感器响应于外部刺激而产生电流,该电流用作输出信号,而无需额外的能源。这样的例子是光电二极管和压电传感器热电偶。在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOx的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。

 

       电喷车为获得高排气净化率,降低排气中(CO)一氧化碳、(HC)碳氢化合物和(NOx)氮氧化合物成份,必须利用三元催化器。但为了能有效地使用三元催化器,必须精确地控制空燃比,使它始终接近理论空燃比。催化器通常装在排气歧管与消声器之间。氧传感器具有一种特性,在理论空燃比(14.7:1)附近它输出的电压有突变。这种特性被用来检测排气中氧气的浓度并反馈给电脑,以控制空燃比。当实际空燃比变高,在排气中氧气的浓度增加而氧传感器把混合气稀的状态(小电动势:O伏)通知ECU。当空燃比比理论空燃比低时,在排气中氧气的浓度降低,而氧传感器的状态(大电动势:1伏)通知(ECU)电脑。

 

       ECU根据来自氧传感器的电动势差别判断空燃比的低或高,并相应地控制喷油持续的时间。但是,如氧传器有故障使输出的电动势不正常,(ECU)电脑就不能精确控制空燃比。所以氧传感器还能弥补由于机械及电喷系统其它件磨损而引起空燃比的误差。可以说是电喷系统中唯一有“智能”的传感器。

 

       传感器的作用是测定发动机燃烧后的排气中氧是否过剩的信息,即氧气含量,并把氧气含量转换成电压信号传递到发动机计算机,使发动机能够实现以过量空气因数为目标的闭环控制;确保三元催化转化器对排气中的碳氢化合物(HC)、一氧化碳(CO)和氮氧化合物(NOX)三种污染物都有最大的转化效率,最大程度地进行排放污染物的转化和净化。

 

  氧传感器利用了Nernst原理。

  其核心元件是多孔的ZrO2陶瓷管,它是一种固态电解质,两侧面分别烧结上多孔铂(Pt)电极。在一定温度下,由于两侧氧浓度不同,高浓度侧(陶瓷管内侧4)的氧分子被吸附在铂电极上与电子(4e)结合形成氧离子O2-,使该电极带正电,O2-离子通过电解质中的氧离子空位迁移到低氧浓度侧(废气侧),使该电极带负电, 即产生电势差。

  • 当空燃比较低时(浓混合气),废气中的氧较少,因此陶瓷管外侧氧离子较少,形成1.0V左右的电动势;
  • 当空燃比等于14.7时,此时陶瓷管内外两侧产生的电动势为0.4V~0.5V, 该电动势为基准电动势;
  • 当空燃比较高时(稀混合气),废气中氧含量较高,陶瓷管内外的氧离子浓度差较小,所以产生电动势很低,接近为零。

 

  氧传感器是汽车上的标准配置,它是利用陶瓷敏感元件测量汽车排气管道中的氧电势,由化学平衡原理计算出对应的氧浓度,达到监测和控制燃烧空燃比,以保证产品质量及尾气排放达标的测量元件。氧传感器广泛应用于各类煤燃烧、油燃烧、气燃烧等炉体的气氛控制,它是目前最佳的燃烧气氛测量方式,具有结构简单、响应迅速、维护容易、使用方便、测量准确等优点。运用该传感器进行燃烧气氛测量和控制既能稳定和提高产品质量,又可缩短生产周期,节约能源。

 

  汽车上的氧传感器工作原理与干电池相似,传感器中的氧化锆元素起类似电解液的作用。其基本工作原理是:在一定条件下,利用氧化锆内外两侧的氧浓度差,产生电位差,且浓度差越大,电位差越大。大气中氧的含量为21%,浓混合气燃烧后的废气实际上不含氧,稀混合气燃烧后生成的废气或因缺火产生的废气中含有较多的氧,但仍比大气中的氧少得多。 在高温及铂的催化下,带负电的氧离子吸附在氧化锆套管的内外表面上。由于大气中的氧气比废气中的氧气多,套管上与大气相通一侧比废气一侧吸附更多的负离子,两侧离子的浓度差产生电动势。

 

  当汽车套管废气一侧的氧浓度低时,在氧传感器电极之间产生一个高电压(0.6~1V),这个电压信号被送到汽车ECU放大处理,ECU把高电压信号看作浓混合气,而把低电压信号看作稀混合气。根据氧传感器的电压信号,电脑按照尽可能接近14.7:1的理论最佳空燃比来稀释或加浓混合气。因此氧传感器是电子控制燃油计量的关键传感器。氧传感器只有在高温时(端部达到300°C以上)其特性才能充分体现,才能输出电压。它在约800°C时,对混合气的变化反应最快,而在低温时这种特性会发生很大变化。

  以下为罗姆的一些传感器产品:

       霍尔芯片:BU52422NUZ-Z

       脉冲率转换器:BU6821G

       脉冲率转换器:BU6823G

       开关控制器芯片:BU21182FS

       电机驱动器:BD63282EFV

  

继续阅读
有了空气质量传感器,再无需担忧隐形杀手

空气质量传感器主要应用于各种空气净化装置和小家电产品,对酒精、香烟、氨气、硫化物等各种污染源都有极高的灵敏度,产品响应时间快,工作稳定,价格便宜。你可以通过空气质量传感器获知室内的空气状况如何,从而对自己所处的环境进行一定程度的清扫改善。传感器在各方面的应用可谓是恰到好处,属实符合便利这两个字。

物联网的工作核心——传感器

物联网的概念是在1999年提出的。物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通讯。

传感器在食品健康方面的应用

一小部分的低收国家为了解决大部分人营养缺乏的问题,而因此启动了大规模食品强化计划。不过可惜的是,这些计划都无法准确确定食品中是否持续存在适量人类营养素所需的资源。至此,判别人体营养成分的项目还处于正在研发的阶段。不过前几日据外媒所报道,已经有开发出了一种可靠的传感器,已经是可以检测食品之中铁的含量了。

柔性传感器的新应用

如今,传感器的应用已经融入到了各个阶层各个行业之中。你或许在任何地方都能看到各式各样功能繁多的传感器。因为随着信息时代,信息的重要性使得传感器的需求量越来越大。信息的测量就不说了,精确度一直是需要有所考量的。由此,传感器的地位可以称得上是奠定信息时代的基石。

传感器+氧=?

在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOx的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。