入门电动汽车DC/DC转换器,罗姆教会你!

分享到:

电动汽车的核心部件可总结为大三电、小三电。大三电即电机、电控、电池,小三电则有不同的说法。有人将“电动空调、电动刹车、电动转向”称为小三电,也有人将“DC/DC转换器、车载充电机、高压配电盒”称为小三电。本文主要介绍DC/DC变换器、车载充电机、高压配电盒。

一、DC/DC转换器

DC/DC转换器(DC/DC convertor)是将某一直流电源电压转换成任意直流电压的变换器。作为电动汽车动力系统中很重要的一部分,它的一类重要功能是为动力转向系统、空调以及其他辅助设备提供所需的电力;另一类功能,是出现在复合电源系统中,与超级电容串联,起到调节电源输出,稳定母线电压的作用。

2

图:给车载电气供电的DC/DC在电动汽车电气系统中的位置

给车载电气供电的DC/DC在选型时,并不是直接将全部电气功率加在一起,来计算需求,而是把用电设备分为长期用电、连续用电、短时间间歇用电和附加用电设备等类型,并赋予不同的权值。下表列出各类设备所消耗功率,供参考。

3

  全球知名半导体制造商ROHM开发出汽车要求的2MHz工作(开关)条件下业界最高降压比的内置MOSFET降压型DC/DC转换器*1)"BD9V100MUF-C"。

"BD9V100MUF-C"搭载了利用超高速脉冲控制电路和高耐压BiCDMOS工艺技术优势等开发而成的超高速脉冲控制技术"Nano Pulse Control",实现了电源IC的世界最小※开关导通时间9ns(开关导通时间是电源IC的控制脉冲宽度,N是10的负9次幂),从而实现了业界最高降压比。

image_gallery

图:搭载超高脉冲控制技术“Nano Pulse Control”电源IC

二、车载充电机

车载充电机(on-board charger;OBC)是固定安装在电动汽车上的控制和调整蓄电池充电的电能转换装置。车载充电机具有为电动汽车动力电池安全、自动充满电的能力,其依据电池管理系统(BMS)提供的数据,动态调节充电电流或电压参数,执行相应的动作,完成充电过程。

车载充电机由两大部分组成:电源部分和充电机控制主板。其中,电源部分主要作用是将220V交流电转化为直流电;充电机控制主板主要是对电源部分进行控制、监测、计算、修正、保护以及与外界网络通信等功能,是车载充电机的“中枢大脑”。

目前,国内车载充电机功率主要有3.3kW、6.6kW,其他还有2kW、10kW、20kW、40kW等。生产车载充电机的国外企业主要有科世达、博世、艾默生、法雷奥、英飞凌等企业,国内企业有欣锐科技、力工新能源、洛阳嘉盛、南京中港电力、富特科技、英威腾、通合电子、得润电子、深圳威迈斯、金霆正通等。

三、高压配电盒

高压配电盒(Power Distribution Unit;PDU)是新能源车高压系统解决方案中的高压电源分配单元。纯电动汽车高压配电盒里面有铜排、断路器、空开、接触器、软启、变频器、变压器、高压继电器、熔断器、浪涌保护器、互感器、电流表、电压表、转换开关等。在电动汽车上,与高压配电盒相连接的高压部件包括:动力电池、电机控制器、变频器、逆变电源、电动空调、电动除霜、充电座等。

6

常见的高压配电盒设计方式有配电盒为一独立零部件或高压配电盒与其他零部件集成在一个盒体内。国内生产高压配电箱的企业有上海埃而生电气、上海追日电气等。

继续阅读
开关电源电流滞环:稳定高效的创新控制模式

开关电源常用的控制模式包括电压控制模式和电流控制模式,而电流滞环是电流控制模式中的一种重要技术。电流滞环控制模式实际上是一个电压环和电流环双闭环控制系统。在这个系统中,电压闭环负反馈有助于实现稳定的输出电压,从而获得较好的负载调整率;而电流闭环负反馈则能实现对输入电压变化的快速响应。

探究平均电流控制模式如何稳定电源?

平均电流控制模式是一种广泛应用于开关电源中的高效控制技术,它主要用于精确控制电源的输出电流,确保其在各种负载条件下保持稳定。平均电流控制模式通过调整开关频率来控制输出电流。当负载发生变化时,控制系统会实时监测输出电流的变化,并相应地调整开关频率,以保持输出电压的稳定。

罗姆与芯驰科技联合开发出车载SoC参考设计, 配备罗姆的PMIC和SerDes IC等产品,助力智能座舱普及!

全球知名半导体制造商罗姆(总部位于日本京都市)与领先的车规芯片企业芯驰科技面向智能座舱联合开发出参考设计“REF66004”。该参考设计主要覆盖芯驰科技的智能座舱SoC*1“X9M”和“X9E”产品,其中配备了罗姆的PMIC*2、SerDes IC*3和LED驱动器等产品。

开关电源必知道的峰值电流控制技术原理!

峰值电流控制技术以其独特的优势在开关电源控制中占据重要地位。峰值电流控制技术是开关电源中一种重要的控制策略,其主要目的是优化电源的性能和稳定性,同时保护电路和设备免受过载和损坏的风险。

探索MOSFET的SOA安全性秘密!

MOSFET的安全操作区(SOA)对于电路的稳定性至关重要,需要精确设计和控制其边界,确保在正常工作条件下电压和电流不超出SOA范围。温度是影响MOSFET性能和SOA的关键因素,必须充分考虑并采取散热措施。同时,引入保护电路和选用高质量MOSFET也能增强其安全性。实时监控和诊断MOSFET的工作状态是保护其安全性的重要手段。