高精度时间间隔测量模块设计

分享到:

时间间隔测量是指测量一个特定的“起始”事件至一个“终止”事件的时间差。时间间隔测量可以用来测量电路时延、雷达脉冲间隔、粒子的飞行时间、电缆长度、脉冲周期、脉冲宽度、上升时间、相位差等。时间间隔测量通常会用一个电子计数器(或者叫频率计)实现。Gate 信号在“Start”信号到来时打开,在“Stop”信号到来时关闭,同时在 Gate 信号打开时对时钟脉冲进行累积计数,根据记得的时钟脉冲个数就可以计算出“Start”和“Stop”信号间的时间差。本文设计了一种高精度时间间隔测量模块,该模块由单片机控制,采用脉冲计数原理,通过测量时间间隔内高频参考时钟个数,得到被测时间间隔的精确值。

测量模块设计

  1引言

  精密时间间隔测量是工业、国防及电力应用等方面的关键技术,脉冲计数法是时间间隔测量技术中最基本的方法[1],因此研究基于脉冲计数法的时间间隔测量技术具有重要的现实意义。本文设计了一种高精度时间间隔测量模块,介绍了该模块的软硬件实现方法。大量实验证明本模块可以实现对微小时间间隔的精确测量,具有很高的应用价值。

  2原理概述

  脉冲计数法是用标准信号形成被计数的参考时钟信号,周期为Tref,频率为fref,通过测量时间间隔Δt内参考时钟信号的个数n,直接显示Δt的值。

测量模块设计

 

  3系统设计

  如图1所示,该系统主要由高频参考时钟设计,分频计数电路,控制面板和显示电路等部分组成。由单片机实现对各部分的功能初始化软件设计,在测时结束后读取分频计数结果,按公式(1)计算出时间后送显示电路显示。

测量模块设计

  3.1硬件设计

由公式(1)可以看出,高频参考时钟是脉冲计数法时间间隔测量的关键。为了产生低偏差低晃动的高频稳定时钟信号,本文采用高稳定度的温补振荡器TC18B作为标准晶振输人。该晶振的频点为12.00000MHz,频率稳定性为±1.0x10*-6,年老化率为±1×10*-6。如图2,标准晶振输人基准信号f,经固定分频(M分颊)后得到频率f,f的信号输入数字鉴相器的一端,压控振荡器输出信号fref经可预置分频器(N分频)后输人数字鉴相器的另一端。这两个信号进行比较,产生一个对应于两个信号相位差的误差电压,该误差电压经处理后去调整压控振荡器的频率(相位)。当环路锁定时,输入信号与压控振荡器输出信号频差为零,相位差不再随时间变化。此时,误差控制电压为一固定值,压控振荡器输出频率与输人信号频率相等,得

测量模块设计

 测量模块设计

  3.2软件设计

  系统软件包括对各工作电路的初始化设置,根据分频计数电路得到的n值,计算时间间隔时间间隔Δt,送给显示电路显示。流程图如图4所示。

测量模块设计

   4实验验证

  将本文研制的高精度时间间隔测量模块应用在电磁波时域反射电缆测长系统中。根据电磁波时域反射测长原理,有如下关系式

测量模块设计

式中,Δt为发射脉冲与反射脉冲的时间间隔,L为电缆长度,v为电磁波在电缆中的传播速度,对特定材料的电缆,波速取固定值[2],本文取v=0.192m/ns。

  由关系式(2)可知,对已知材料的电缆,电缆长度L与发射脉冲与反射脉冲间时间间隔Δt成正比。通过对已知长度的电缆发射脉冲与反射脉冲的时间间隔进行测量,可以对时间间隔测量模块的特性进行验证。本文对长7.01m,66.77m和120.30m的电缆分别进行多次测量,测量结果如表2所示。

测量模块设计

  由实验结果可以看出,本模块测时分辨率为0.83ns,测量误差很小,完全可以满足高精度时间间隔测量要求。

  5本文创新点

  设计了一种高精度时间间隔测量模块。该模块将标准晶振锁相倍频输出1200MHz高频参考时钟,通过测量发射脉冲与反射脉冲间时间间隔内高频参考时钟个数,得到时间间隔Δt,测时分辨率为0.83ns。

      6结论

       本文提出了一种高精度时间间隔测量模块的软、硬件设计方法,该模块结构简单,实现方便,测量精度高。不仅能实现对微小时间间隔的精确测量,而且在此模块设计的基础上,结合其它技术,对时间、频率和相位的测量也能实现,具有较高的应用价值。

 

继续阅读
高精度时间间隔测量模块设计

时间间隔测量是指测量一个特定的“起始”事件至一个“终止”事件的时间差。时间间隔测量可以用来测量电路时延、雷达脉冲间隔、粒子的飞行时间、电缆长度、脉冲周期、脉冲宽度、上升时间、相位差等。时间间隔测量通常会用一个电子计数器(或者叫频率计)实现。Gate 信号在“Start”信号到来时打开,在“Stop”信号到来时关闭,同时在 Gate 信号打开时对时钟脉冲进行累积计数,根据记得的时钟脉冲个数就可以计算出“Start”和“Stop”信号间的时间差。本文设计了一种高精度时间间隔测量模块,该模块由单片机控制,采用脉