如何选择仪表放大器

分享到:

仪表放大器(又称测量放大器)测量噪声环境下的小信号。噪声通常是共模噪声,所以,当信号是差分时,仪表放大器利用其共模抑制(CMR)将需要的信号从噪声中分离出来。在这些应用中,信号源的输出阻抗常常达几kΩ或更大,因此,仪表放大器的输入阻抗非常大——通常达数GΩ,它工作在DC到约1MHz之间。在更高频率处,输入容抗的问题比输入阻抗更大。高速应用通常采用差分放大器,差分放大器速度更快,但输入阻抗要低。


运放的关键参数
设计工程师确定放大器时,主要关心的是电源电流、带宽、共模抑制比(CMRR)、输入电压补偿和补偿电压温漂、噪声(指输入)以及输入偏置电流。


三运放仪表放大器的内部结构
大多数仪表放大器采用3个运算放大器排成两级:一个由两运放组成的前置放大器,后面跟一个差分放大器(图1a)。前置放大器提供高输入阻抗、低噪声和增益。差分放大器抑制共模噪声,还能在需要时提供一定的附加增益。

放大器
 

二运放仪表放大器结构
可以采用具有两个运放的较少元器件的结构替代(图1b),但有两个缺点。首先,不对称的结构使CMRR较低,特别是高频时。其次,由于第一级的增益量有限。输出误差反馈回输入端,导致相对输入的噪声和补偿误差更大。
如何保护仪表放大器的输入免受过电压的影响?
设计师需要采用外部限流电阻来防止过电压通过内部静电放电(ESD)箝位二极管驱动过高的电流。这些电阻的值取决于仪表放大器的噪声水平、电源电压,以及需要的过压保护,推荐值见器件的datasheet。
这些电阻增加了噪声,所以一种可替代的方案是使用外部高电流箝位二极管和阻值非常小的电阻。遗憾的是,大多数普通二极管的漏电流太大,会产生大的输出漂移误差,该误差随温度变化呈指数关系增加,所以设计师不应该将标准二极管用于高阻抗信号源。
什么是RFI整流?如何预防?
传感器与仪表放大器之间的长引线会引起RF。仪表放大器随之将此RF整流为DC偏移。图2给出了一个方案,可在RF到达仪表放大器前就将其滤掉。元件R1a和C1a在同相端构成一低通滤波器,R1b和C1b在反相端同样构成低通滤波器。

放大器

这两个低通滤波器截止频率的很好匹配很重要。否则,共模信号将会被转换为差分信号。C2在高频段将输入“短路”,能在一定程度上降低这种要求,C2值的大小应该至少为C1的10倍。
虽然如此,C1a和C1b的匹配仍很关键,应该选用±5%C0G薄膜电容。该滤波器的差分带宽为[1/2πR(2C2+C1)],共模带宽为[1/2πR1C1)]。


购买单片放大器和用运放构建一个仪表放大器两者的利弊是什么?
用分立运放构建一个仪表放大器的最主要理由是在市面上找不到所需要的仪表放大器。不同厂家生产的运放有5000种以上的型号,而仪表放大器型号只有约100种。


但是,若能找到一款满足性能要求的单片仪表放大器,那就用它,不要再自己构建。这样,会节省开发时间,并且单片部件的体积肯定小。


此外,CMRR性能会更好。由于多数电阻都在片上,板寄生效应要小的多。另一个优点是,对于任何额定电流,单片设计的噪声和带宽参数通常都更好。


三运放测量(仪表)放大器内部电路分析
在许多测试场合,传感器输出的信号往往很微弱,而且伴随有很大的共模电压(包括干扰电压),一般对这种信号需要采用测量放大器。

放大器


上图是目前广泛应用的三运放测量放大器电路。测量放大器电路还具有增益调节功能,调节RG可以改变增益而不影响电路的对称性。其中A1、A2为两个性能一致(主要指输入阻抗、共模抑制比和开环增益)的通用集成运放,工作于同相放大方式,构成平衡对称的差动放大输入级,A3工作于差动放大方式,用来进一步抑制A1、A2的共模信号,并接成单端输出方式适应接地负载的需要。
该电路分析如下:

放大器


测量放大器的共模抑制比主要取决于输入级运放A1、A2的对称性以及输出级运放A3的共模抑制比和输出级外接电阻R3、R5及R4、R6的匹配精度(±0.1%以内)。一般其共模抑制比可达120dB以上。

此外,测量放大器电路还具有增益调节功能,调节RG可以改变增益而不影响电路的对称性。另外,由于输入级采用对称的同相放大器,输入电阻可达数百兆欧以上。现在很多公司都研发出了各种优质的单片集成测量放大器,通常只需要外接电阻RG用于设定增益,外接元件少,使用灵活,可以处理几个微伏到几伏的电压信号。

 

继续阅读
如何选择运算放大器

运算放大器是重要的模拟器。在选择一个好的运算放大器时,我们需要了解运算放大器的设计要求、制造工艺和一些具体参数。本文将介绍选择运算放大器的注意事项。

如何选择仪表放大器

仪表放大器(又称测量放大器)测量噪声环境下的小信号。噪声通常是共模噪声,所以,当信号是差分时,仪表放大器利用其共模抑制(CMR)将需要的信号从噪声中分离出来。在这些应用中,信号源的输出阻抗常常达几kΩ或更大,因此,仪表放大器的输入阻抗非常大——通常达数GΩ,它工作在DC到约1MHz之间。在更高频率处,输入容抗的问题比输入阻抗更大。高速应用通常采用差分放大器,差分放大器速度更快,但输入阻抗要低。

提升射频功率放大器的效率

热力学的基本定律表明,没有一种电子设备能达到100%的效率——尽管开关电源很近(高达98%)。遗憾的是,目前任何产生射频功率的器件都不能达到或接近理想的性能,因为在将直流功率转换为射频功率的过程中存在着太多的缺陷,包括整个信号通路的传输引起的损耗,转到工作频率时的损耗,以及设备固有特性的损失。因此,射频功率放大器是一个效率低的硬件。

运算放大器输入的过压保护

高精确的运算放大器使系统设计者能够在放大器信号(放大、滤波和缓冲)的同时保持原信号的精度。信息包含在动态变化极小的信号中时,在信号通路上的操作同位素具有极低的直流和交流误差性能是非常必要的。整个系统的精度依赖于信号路径的精度保持程度。在一些应用中,可能会出现电源电压之外的电压驱动运算子输入的情况,即所谓的过压情况。

计算集成斩波放大器的ADC转换器的失调误差和输入阻抗

模拟数字转换器即A/D转换器,或简称ADC,通常是指一个将模拟信号转变为数字信号的电子元件。通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。由于数字信号本身不具有实际意义,仅仅表示一个相对大小。故任何一个模数转换器都需要一个参考模拟量作为转换的标准,比较常见的参考标准为最大的可转换信号大小。而输出的数字量则表示输入信号相对于参考信号的大小。