解析COB LED温度分布机理及测量方法

分享到:

LED产品的可靠性与光源温度密切相关。由于COB光源采用多芯片高密度封装,其温度分布和测量明显不同于SMD光源。下面将从技术层面介绍了COB光源的温度分布特点和内部机理,并对常用的温度测量方式进行比较。

引言
COB (Chip-on-Board) 封装技术因其具有热阻低、光通量密度高、色容差小、组装工序少等优势,在业内受到越来越多的关注。COB 封装技术已在 IC 集成电路中应用多年,但对于广大的灯具制造商和消费者,LED 光源采用 COB 封装还是新颖的技术。

LED 产品的可靠性与光源的温度密切相关,由于 COB 光源采用多颗芯片高密度封装,其温度分布、测量与 SMD 光源有明显不同。

COB 光源的温度分布
COB 封装就是将芯片直接贴装到光源的基板上,使用时 COB 光源与热沉直接相连,无需进行 SMT 表面组装。SMD 封装则先将芯片贴装在支架上成为一个器件,使用时需将器件贴装到基板上再与热沉连接。
两者的热阻结构示意图如图1所示,相对于 SMD 器件,COB 热阻比 SMD 在使用时少了支架层热阻与焊料层热阻,芯片的热量更容易传递到热沉。
温度分布

图1:热阻结构示意图

1、常用温度测量方法比较
常用的温度传感器类型有热电偶、热电阻、红外辐射器等。热电偶是由两条不同的金属线组成,一端结合在一起,该连接点处的温度变化会引起另外两端之间的电压变化,通过测量电压即可反推出温度。热电阻利用材料的电阻随材料的温度变化的机理,通过间接测量电阻计算出温度。
红外传感器通过测量材料发射出的辐射能量进行温度测量,三者的主要特征如表1所示。
 

温度分布

表1:温度测量方法对比


热电偶成本低廉,在测温领域中最为广泛,探头的体积越小,对温度越灵敏,IEC60598 要求热电偶探头涂上高反射材料减少光对温度测量的影响。但如果将热电偶直接贴在发光面上进行测量,探头吸光转换成热的效果十分明显,会导致测量值偏高。
实际测量中有不少技术人员习惯用高温胶带进行探头固定,如图2所示。这种粘接会加剧这种吸光转热效应,导致测量值严重偏高,偏差可达50℃以上。
 

温度分布

图2:错误的温度测量方式


因此,为避免光对热电偶的影响,建议使用红外热成像仪进行温度测量,红外热成像仪除具有响应时间快、非接触、无需断电、快速扫描等优点,还可以实时显示待测物体的温度分布。红外测温原理是基于斯特藩—玻耳兹曼定理,可用以下公式表示。
 

温度分布

其中P(T)为辐射能量,σ 为斯特藩—玻耳兹曼常量,ε 为发射率,红外测温的精确与待测材料的发射率密切相关,由于 COB 光源表面的大部分材料发射率是未知的,为了精准测温,可将光源放置在恒温加热台上,待光源加热到一个已知温度处于热平衡状态后,用红外热成像仪测量物体表面温度,再调整材料的发射率,使其温度显示为正确温度。
2、发光面温度实测
为进一步从实验上研究 COB 光源的热分布,选用高反射率镜面铝为基板作为对象,这种封装结构一方面可大幅提高出光效率,另一方面封装形式采用热电分离的形式,没有普通铝基板的绝缘层作为阻拦,可进一步降低热阻和结温,实现 COB 光源高光通量密度输出。

温度分布

图3:待测镜面铝 COB 光源外观


本次待测样品除了荧光胶的配比不同,其他材料均相同,待测样品的颜色分别为蓝色、2700K和6500K。三款样品的红外热成像结果参见图3(a)、(b)和(c)。
 

温度分布

 

温度分布

 

温度分布

图4:样品红外热成像图


从图中可以看到,蓝色样品的发光面最高温度为93.6℃,2700K的发光面最高温度为124.5℃、6500K的发光面最高温度为107.8℃。
温度的差异可如下解释,白光是由芯片产生的蓝光激发荧光粉混成白光,在蓝光激发荧光粉的过程中,荧光粉和硅胶会吸收一部分光转化成热,经过测量可知蓝色样品的光电转换效率为41.6%,2700K 样品为 32.2%,6500K 为38.5%,2700K 样品的光电转换效率最低,主要原因是 2700K 样品的荧光粉使用量多于 6500K,在蓝光激发荧光粉过程中有更多蓝光转换成热量,相关参数参考表2。
 

温度分布

表2:样品光电参数


3、COB 光源的热分布机理
从上节的测温实例中可知,COB 光源的胶体温度最高可达125℃,而目前大部分芯片能承受的最高结温不能超过125℃,很多灯具厂商认为发光面的温度超过125℃,芯片的温度应该会更高,继而担忧 COB 光源的可靠性。
针对这个问题,芬兰国家技术研究中心的研究人员 Eveliina Juntunen 等在 IEEE 杂志《Components, Packaging and Manufacturing Technology》2013年7月份的期刊上发表了一篇名为“Effect of Phosphor Encapsulant on the Thermal Resistance of a High-Power COB LED Module”专业文章,该文章对 COB 光源的温度分布和内在机理做了深入的研究。
 

温度分布


图5是该文根据试验数据并结合仿真得出的,从图中可以看到,荧光胶的温度可达186℃,但芯片温度只有49.5℃。芯片的温度较低是因为芯片直接贴装到铝基板上方,芯片的热量可通过基板快速传递到散热器上,因此 COB 光源的芯片温度远低于芯片允许的最高结温。
荧光胶的温度高于芯片温度是因为 COB 光源的芯片数量和排列密度高于比普通的 SMD 器件,通过荧光胶的光能量密度明显高于 SMD 器件,荧光粉和硅胶都会吸收一部分的蓝光转换成热,加上硅胶热容与热导率较小,导致荧光胶的温度急剧上升,因此 COB 光源工作时荧光胶的温度会远高于芯片温度。
总结
1、COB 光源在封装上采用的是将芯片直接贴装到基板上方,热阻较 SMD 器件要小,有利于芯片散热,实际工作中芯片的结温远低于芯片允许的最高结温。由于光源采用多芯片排布,可在较小发光面实现高流明密度输出。

2.光源工作时,荧光粉和硅胶会吸收部分光并将其转化为热。高光通量密度输出将导致发光表面上更集中的热量和发光表面上更高的温度。如果使用热电偶直接测量发光表面的温度,热电偶的探头也会吸收光线并将其转化为热量,因此温度测量值偏高。

3。因此,为了有效研究COB光源表面的热量分布,建议使用红外热像仪进行非接触测量。由于COB光源的发光表面温度高于普通SMD器件,因此封装工艺和材料选择比SMD器件更严格,特别是对于荧光粉和硅胶的耐温性。

 

继续阅读
解析COB LED温度分布机理及测量方法

LED产品的可靠性与光源温度密切相关。由于COB光源采用多芯片高密度封装,其温度分布和测量明显不同于SMD光源。下面将从技术层面介绍了COB光源的温度分布特点和内部机理,并对常用的温度测量方式进行比较。

读透LED芯片

LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。LED芯片一种固态的半导体器件,它也称为led发光芯片,是led灯的核心组件,也就是指的P-N结。其主要功能是:把电能转化为光能,芯片的主要材料为单晶硅。

LED全彩显示屏驱动IC的功能和作用

在 LED全彩显示屏的工作中,驱动 IC的作用是接收符合协议规定的显示数据(来自接收卡或视频处理器等信息源),在内部产生 PWM与电流时间变化、输出与亮度灰度刷新等相关的 PWM电流来点亮LED。由驱动 IC与逻辑 IC及 MOS开关组成的周边 IC共同作用于 LED显示屏的显示功能,并决定所呈现的显示效果。

LED灯驱动电源实例解析

罗姆开发了薄型化而且可调光的绝缘型大功率LED驱动器模块 BP5872。因为实现了薄型化与可调光,扩大了LED照明的应用。 而且,实现了市场需求很高的谐波对策,全球输入,高效率的要求,能够很容易的制成附加值高的LED照明产品。

2019“罗姆彩灯节” :用“灯光”为文化的发展与进步做贡献

全球知名半导体制造商罗姆(总部位于日本京都)于2019年11月22日(星期五)~12月25日(星期三)为期一个月的时间里,在京都总部周边区域举行2019“罗姆彩灯节”活动。约86万颗彩灯照亮京都,为寒冬带来暖心的精彩时光。