去耦电容的有效使用方法 总结

分享到:

前面分三次对“去耦电容的有效使用方法”进行了介绍。利用电容来降低噪声是非常重要的,所以在这里总结一下。
 
・要点1:使用多个去耦电容
・要点2:降低电容的ESL(等效串联电感)
・其他注意事项
 
要点1:使用多个去耦电容
 
使用多个电容去耦时,使用多个相同容值的电容和交织使用不同容值的电容时,效果是不同的。
 
■使用多个相同容值的电容时
在整个频率范围内阻抗下降,可有效降低整体噪声。
 
■使用多个不同容值的电容时
可降低更高频段的阻抗,可有效降低高频噪声。但是需要注意的是,有些频率会产生反谐振,阻抗反而增高,噪声反而恶化。
 
要点2:降低电容的ESL
 
如果容量相同,则ESL越低谐振频率越高,因此通过降低ESL可改善高频特性,从而可更有效地降低高频噪声。
 
■即使容值相同也要使用尺寸较小的电容
ESL取决于电容引脚部位的结构,因此尺寸较小的电容基本上引脚部位也较小,通常ESL较小。当需要降低更高频段的噪声时,方法之一是选择尺寸小的电容。但是,要注意DC偏置特性。
 
■使用旨在降低ESL的电容
积层陶瓷电容中,有些型号采用的是旨在降低ESL的形状和结构,比如LW逆转型电容、三端电容。
 
去耦电容的有效使用方法:其他注意事项
 
■Q较高的陶瓷电容
当Q值高时,阻抗在特定的窄带会变得非常低。当Q值低时,阻抗虽然不会极度下降,但可以在较宽的频段内降低。
 
■热风焊盘等的PCB图形
旨在提高散热性的热风焊盘等的PCB图形,图形的电感分量会增加,会使谐振频率向低频端移动,所以有时可能无法获得理想的噪声消除效果。
 
■探讨对策时的电容试装
增加小容量电容以降低高频噪声时,要基于“尽可能使小容量电容靠近噪声源”的理论,以尽量接近实际修改的配置进行探讨。探讨时如果和修改后的配置不同,阻抗也会不同,很可能无法获得评估时的效果。
 
■电容的电容量变化率
噪声对策用的电容的电容量变化率较大时,谐振频率的波动会变大,目标消减频段会产生变化或波动,有时很难找到理想的噪声对策。尤其是需要在窄频段大幅消除噪声时,需要格外注意。
 
■电容的温度特性
电容的特性会受温度影响,因此,在明显的高温、低温、较大温度变化的条件/环境下使用的应用,需要采用温度特性优异的电容。
继续阅读
三种存储技术(MLC、TLC和SLC)之间的区别及比较

      X3(3-bit-per-cell)架构的TLC芯片技术是MLC和TLC技术的延伸,最早期NAND Flash技术架构是SLC(Single-Level Cell),原理是在1个存储器储存单元(cell)中存放1位元(bit)的资料,直到MLC(Multi-Level Cell)技术接棒后,架构演进为1个存储器储存单元存放2位元。

电源管理:不仅仅是设计一个电源

无论电子工程师正在设计什么类型的产品,电源管理已成为他们面临最紧迫的一个挑战,从设计电动汽车的单个电池组以便实现最大里程数,再到最小的电池供电IoT传感器,通过延长电池寿命来维持工厂的运营效率,这些都至关重要。电源不再仅仅是必须设计的一组静态电源轨,如今的电源架构师必须适应快速变化的负载条件,提供无瞬态的电源轨以达到严格的公差,并将所有设备都尽力纳入到一个空间越来越受限制的外壳中。在本技术文章中,我们将重点介绍电源架构师面临的一些重要挑战,重点是管理转换器噪声、生产和认证挑战,以及进一步缩小PCB尺寸的需

ROHM开发出使用纳法级超小电容也能稳定运行的内置新电路的车载LDO稳压器“BD9xxN1系列” Nano Cap™ 技

全球知名半导体制造商ROHM(总部位于日本京都市)面向汽车动力总成系统、车身和汽车信息娱乐系统等广泛的车载应用的一次(直接连接12V电池)电源,开发出车载LDO稳压器*1 IC “BD9xxN1(BD950N1G-C、BD933N1G-C、BD900N1G-C、 BD950N1WG-C、BD933N1WG-C、BD900N1WG-C)”。

ROHM开发出高精度、超低功耗且支持40V电压的窗口型复位IC* “BD48HW0G-C” 为需要功能安全的车载和工业设

全球知名半导体制造商ROHM(总部位于日本京都市)面向需要对电子电路进行电压监控以确保安全的各种车载和工业设备应用(包括车辆引擎控制单元和FA设备),开发出具有高精度和超低静态电流的复位IC*1(电压检测器)“BD48HW0G-C”。

ROHM开发出可简化视频传输路径的、用于车载多屏显示器的串行/解串器“BU18xx82-M” 支持全高清(Full HD

全球知名半导体制造商ROHM(总部位于日本京都市)面向多屏化趋势下的车载显示器领域,开发出支持全高清分辨率(1,980×1,080像素)的SerDes IC*1(串行器:BU18TL82-M,解串器:BU18RL82-M)。