ROHM开发出符合功能安全标准“ISO 26262”的、用于下一代车载摄像头模块的电源管理IC

分享到:

全球知名半导体制造商ROHM(总部位于日本京都市)面向在ADAS(高级驾驶辅助系统)等产品中应用日益广泛的车载摄像头模块(以下简称“车载摄像头”),开发出符合ISO 26262*1及其ASIL-B*1标准的PMIC*2 BD868xxMUF-C(BD868C0MUF-C、BD868D0MUF-C)。

 

能安全要求,使配备ADAS的下一代汽车所需的安全设计更加容易。此外,在仅为3.5mm×3.5mm的封装中,还内置有车载摄像头所需的4个电源系统(DC/DC*3:3个系统,LDO*3:1个系统),并配备了异常状态通知机构,可以检测到电压异常等状况并通过I2C来反馈。在同类PMIC中,实现了业界超小尺寸。与以往产品相比,可减少3个元器件,安装面积可缩减25%,有助于车载摄像头的小型化。此外,还可以进行更宽范围的输出电压设置和时序控制设置,可满足各制造商不同CMOS图像传感器的不同要求,有助于减少开发工时。

 

新产品已于2022年4月开始出售样品(样品价格为700日元/个,不含税),预计将于2022年8月开始暂以月产50万个的规模投入量产。前期工序的生产基地为ROHM Hamamatsu Co., Ltd.(日本滨松市),后期工序的生产基地为ROHM Electronics Philippines, Inc.(菲律宾)。

另外,还会陆续推出新产品的衍生机型BD868A0MUF-C、BD868B0MUF-C和BD868C1MUF-C。

罗姆 ROHM 电源管理IC

近年来,随着ADAS技术的发展,每辆汽车所安装的车载摄像头数量也在增加。同时,由于车载摄像头的故障可能会导致严重的事故,因此引入有助于预防事故的“功能安全”理念变得越来越重要。不仅汽车和汽车电子产品制造商,就连半导体等高精度电子元器件制造商也需要满足国际功能安全标准“ISO 26262”的要求。

ROHM早在2018年就通过德国第三方认证机构TÜV Rheinland获得了ISO 26262的开发流程认证。此外于2021年,ROHM还推出了“ComfySIL™”品牌,旨在通过“功能安全”的产品为用户和系统的安全、安心与舒适做出贡献。新产品在“ComfySIL™”品牌中,也是符合ISO 26262流程的,而且属于满足其最高等级“FS process compliant”的产品,有助于提高下一代汽车的安全性。

<产品阵容>

在新产品的产品阵容中,除了符合ISO 26262及其ASIL-B标准的4款机型(BD868A0MUF-C、BD868B0MUF-C、BD868C0MUF-C、BD868D0MUF-C)外,预计还将为不需要ASIL等级产品的客户增加一款非ISO 26262级产品“BD868C1MUF-C”。

罗姆 ROHM 电源管理IC

<应用示例>

后视摄像头、周边监控摄像头、行车记录仪、驾驶员监控系统等

罗姆 ROHM 电源管理IC

<关于ComfySIL™品牌>

ROHM面向要进行功能安全设计的客户等利益相关者推出了 ComfySIL™品牌,旨在通过产品为社会系统的安全、安心与舒适做出贡献。ComfySIL™适用于遵循 ComfySIL™理念的功能安全产品,不仅包括汽车领域也涵盖工业设备领域的功能安全。

<术语解说>

*1) ISO 26262、ASIL(Automotive Safety Integrity Level)

ISO 26262是2011年11月正式颁布实施的汽车电子电气系统功能安全相关的国际标准。是一种旨在实现“功能安全”的标准化开发流程。需要计算车载电子控制中的故障风险,并将降低其风险的机制作为功能之一预先嵌入系统。该标准覆盖了从车辆概念阶段到系统、ECU、嵌入软件、设备开发及其生产、维护和报废阶段的车辆开发整个生命周期。

ASIL是ISO 26262中定义的风险分类系统,共分4个等级,风险等级越高,对功能安全的要求就越高。

*2) PMIC(电源管理IC)

一种内含多个电源系统、并在一枚芯片上集成了电源管理和时序控制等功能的IC。与单独使用DC/DC、LDO及分立元器件等构成的电路结构相比,可以显着减少空间并缩短开发周期,因此近年来,无论在车载设备还是消费电子设备领域,均已成为具有多个电源系统的应用中的常用器件。

*3) DC/DC转换器(开关稳压器)、LDO(Low Drop Out Regulator  / 低饱和稳压器)

都属于电源IC的一种,具有将直流(DC)电压转换为直流电压的功能。DC/DC转换器也称为“开关稳压器”,通过开关来生成输出电压。通常功率转换效率比较优异,主要有用来降低电压的“降压型”和用来提升电压的“升压型”两种类型。

LDO属于“线性稳压器”类别里的电源IC,通过电阻分压来生成输出电压。与DC/DC转换器等开关稳压器相比,仅能够降压,但具有电路结构简单、噪声低等特点。

 

继续阅读
【技术干货】提升能源利用效率的住宅储能解决方案

电池储能(ESS)解决方案除了应用于工业、发电之外,在家庭住宅部分,也成为当前应用与市场发展的关键。住宅的ESS解决方案所需的功率较小,但对转换效率与安全性的要求,仍与工业应用相同。本文将为您介绍住宅ESS解决方案的市场趋势,以及艾睿电子与Rohm推出的SiC相关解决方案的功能特性。

BMS低边驱动:原理揭秘、技术创新与未来展望

BMS中的低边驱动原理主要控制电池负极端的通断,通过功率MOSFET和相关控制电路确保电池充放电过程的安全与高效。其设计简单、成本低廉,但通信时需隔离措施。未来,低边驱动将更智能化、集成化,注重安全性与能效优化,同时模块化、标准化也将成为发展趋势,以适应BMS市场的不断扩大和多样化需求。

高边驱动革新:BMS性能提升的关键所在

随着电动汽车和储能系统的快速发展,BMS中高边驱动的性能要求日益提升。未来,高边驱动将朝更高精度、更稳定及智能化的方向发展,通过集成先进传感器和算法实现精细充放电控制,并与其他系统协同工作提升整体效率与安全性。新材料和新工艺的应用将推动高边驱动技术创新,提高效率和可靠性。安全性和可靠性始终是核心,需加强安全防护和可靠性设计。

BMS高边驱动:原理揭秘与应用挑战探析

BMS作为电池管理的重要部分,高边驱动是其关键组件,通过控制电池正极开关实现充放电过程的精确控制。高边驱动需应对电池复杂特性、高电压大电流挑战,并解决散热和电磁干扰问题。同时,高边驱动设计需考虑电池包与ECU共地问题,确保通信正常。高边驱动的性能直接影响电池系统整体运行效果,需不断优化设计以满足电池管理需求。

反馈光耦经典连法揭秘,创新引领未来!

反馈光耦通过光电转换实现电路的稳定可靠反馈控制,在电机控制、开关电源、通信和计算机等领域有广泛应用。未来,反馈光耦将朝着高速化、高精度化和智能化方向发展,以满足不断提升的数据传输和测量控制需求,同时融入智能化系统提升系统稳定性。