DC风扇电机速度控制的DC/DC转换器——BD9227F

分享到:

业界首创的能够根据MCU生成的PWM信号的Duty*1对输出电压进行线性控制,从而实现了对DC风扇电机转速的高精度控制的电源IC。

1

与以往的分立式元器件结构相比,不仅实现了高精度控制,还利用IC的模拟电路设计技术实现了1MHz的高频驱动和电路优化。

特点1:通过输出电压的线性控制 实现电机转速的高精度化
采用以往的分立式结构时,对于输入到PWM端子的脉冲的Duty,输出电压并不线性,因此很难对电机的转速进行高精度控制。

"BD9227F"根据MCU生成的PWM信号的Duty对输出电压进行线性控制,从而实现了对DC风扇电机转速的高精度控制。

23

特点2:部品占有面積75%削減

以往分立式结构的一大课题是难以对MCU输入的PWM信号实现高频化,周边零部件需要大的线圈和输出电容器,导致占用面积大。

"BD9227F"通过IC内的频率控制实现了动作频率1MHz的高频驱动,将大的线圈及输出电容器等周边零部件小型化,使得占用面积比以往减少了75%。

4

特点3:全负载领域实现高效率

与分立式结构相比,"BD9227F"实现了全负载领域的高效化。例如300mA负载时,功率转换效率可提高约19%。高负载时差距更大。

5

继续阅读
开关电源电流滞环:稳定高效的创新控制模式

开关电源常用的控制模式包括电压控制模式和电流控制模式,而电流滞环是电流控制模式中的一种重要技术。电流滞环控制模式实际上是一个电压环和电流环双闭环控制系统。在这个系统中,电压闭环负反馈有助于实现稳定的输出电压,从而获得较好的负载调整率;而电流闭环负反馈则能实现对输入电压变化的快速响应。

探究平均电流控制模式如何稳定电源?

平均电流控制模式是一种广泛应用于开关电源中的高效控制技术,它主要用于精确控制电源的输出电流,确保其在各种负载条件下保持稳定。平均电流控制模式通过调整开关频率来控制输出电流。当负载发生变化时,控制系统会实时监测输出电流的变化,并相应地调整开关频率,以保持输出电压的稳定。

罗姆与芯驰科技联合开发出车载SoC参考设计, 配备罗姆的PMIC和SerDes IC等产品,助力智能座舱普及!

全球知名半导体制造商罗姆(总部位于日本京都市)与领先的车规芯片企业芯驰科技面向智能座舱联合开发出参考设计“REF66004”。该参考设计主要覆盖芯驰科技的智能座舱SoC*1“X9M”和“X9E”产品,其中配备了罗姆的PMIC*2、SerDes IC*3和LED驱动器等产品。

开关电源必知道的峰值电流控制技术原理!

峰值电流控制技术以其独特的优势在开关电源控制中占据重要地位。峰值电流控制技术是开关电源中一种重要的控制策略,其主要目的是优化电源的性能和稳定性,同时保护电路和设备免受过载和损坏的风险。

探索MOSFET的SOA安全性秘密!

MOSFET的安全操作区(SOA)对于电路的稳定性至关重要,需要精确设计和控制其边界,确保在正常工作条件下电压和电流不超出SOA范围。温度是影响MOSFET性能和SOA的关键因素,必须充分考虑并采取散热措施。同时,引入保护电路和选用高质量MOSFET也能增强其安全性。实时监控和诊断MOSFET的工作状态是保护其安全性的重要手段。