DCDC电路中全半桥、正反激、推挽拓扑结构的优缺点分析

分享到:

在DC/DC电路中,反激最简单,一个变压器,一个开关管,一个输出二极管;正激在上面的基础上,多一个储能电感,次级多一个续流二极管;推挽,两个开关管,一个变压器(变压器初级抽头),次级也抽头,两个输出二极管;半桥,跟推挽相近,但变压器没有抽头,次级同推挽;全桥,有四个开关,次级同推挽......以下本文将简要介绍几种电路的优缺点。

一、单端正激式

单端:通过一只开关器件单向驱动脉冲变压器.

罗姆   ROHM   DC/DC电路

 

单端:通过一只开关器件单向驱动脉冲变压器.

正激:脉冲变压器的原/付边相位关系,确保在开关管导通,驱动脉冲变压器原边时,变压器付边同时对负载供电。

该电路的最大问题是: 开关管T交替工作于通/断两种状态,当开关管关断时,脉冲变压器处于“空载”状态,其中储存的磁能将被积累到下一个周期,直至电感器饱和,使开关器件烧毁。图中的D3与N3构成的磁通复位电路,提供了泄放多余磁能的渠道。

二、单端反激式

反激式电路与正激式电路相反,脉冲变压器的原/付边相位关系,确保当开关管导通,驱动脉冲变压器原边时,变压器付边不对负载供电,即原/付边交错通断。脉冲变压器磁能被积累的问题容易解决, 但是,由于变压器存在漏感,将在原边形成电压尖峰,可能击穿开关器件,需要设置电压钳位电路予以保护D3、N3构成的回路。 从电路原理图上看,反激式与正激式很相象,表面上只是变压器同名端的区别,但电路的工作方式不同,D3、N3的作用也不同。

三、推挽式

这种电路 结构的特点是: 对称性结构,脉冲变压器原边是两个对称线圈,两只开关管接成对称关系,轮流通断,工作过程类似于线性放大电路中的乙类推挽功率放大器。

罗姆   ROHM   DC/DC电路

主要优点: 高频变压器磁芯利用率高(与单端电路相比)、电源电压利用率高(与后面要叙述的半桥电路相比)、输出功率大、两管基极均为低电平,驱动电路简单。

主要缺点 :变压器绕组利用率低、对开关管的耐压要求比较高(至少是电源电压的两倍)。

这种电路结构的特点是:由四只相同的开关管接成电桥结构驱动脉冲变压器原边。

图中T1、T4为一对,由同一组信号驱动,同时导通/关端; T2、T3为另一对,由另一组信号驱动,同时导通/关端。 两对开关管轮流通/断,在变压器原边线圈中形成正/负交变的脉冲电流。

主要优点: 与推挽结构相比,原边绕组减少了一半,开关管耐压降低一半。

主要缺点: 使用的开关管数量多,且要求参数一致性好,驱动电路复杂,实现同步比较困难。 这种电路结构通常使用在1KW以上超大功率开关电源电路中。

电路的结构类似于全桥式,只是把其中的两只开关管(T3、T4)换成了两只等值大电容C1、C2。

主要优点:

具有一定的抗不平衡能力,对电路对称性要求不很严格;

适应的功率范围较大,从几十瓦到千瓦都可以;

开关管耐压要求较低;

电路成本比全桥电路低等。

正激:脉冲变压器的原/付边相位关系,确保在开关管导通,驱动脉冲变压器原边时,变压器付边同时对负载供电。

罗姆   ROHM   DC/DC电路

该电路的最大问题是: 开关管T交替工作于通/断两种状态,当开关管关断时,脉冲变压器处于“空载”状态,其中储存的磁能将被积累到下一个周期,直至电感器饱和,使开关器件烧毁。 图中的D3与N3构成的磁通复位电路,提供了泄放多余磁能的渠道。

反激式电路与正激式电路相反,脉冲变压器的原/付边相位关系,确保当开关管导通,驱动脉冲变压器原边时,变压器付边不对负载供电,即原/付边交错通断。 脉冲变压器磁能被积累的问题容易解决, 但是,由于变压器存在漏感,将在原边形成电压尖峰,可能击穿开关器件,需要设置电压钳位电路予以保护D3、N3构成的回路。 从电路原理图上看,反激式与正激式很相象,表面上只是变压器同名端的区别,但电路的工作方式不同,D3、N3的作用也不同。

罗姆   ROHM   DC/DC电路

这种电路 结构的特点是: 对称性结构,脉冲变压器原边是两个对称线圈,两只开关管接成对称关系,轮流通断,工作过程类似于线性放大电路中的乙类推挽功率放大器。

罗姆   ROHM   DC/DC电路

主要优点: 高频变压器磁芯利用率高(与单端电路相比)、电源电压利用率高(与后面要叙述的半桥电路相比)、输出功率大、两管基极均为低电平,驱动电路简单。

主要缺点 :变压器绕组利用率低、对开关管的耐压要求比较高(至少是电源电压的两倍)。

这种电路结构的特点是:由四只相同的开关管接成电桥结构驱动脉冲变压器原边。

罗姆   ROHM   DC/DC电路

图中T1、T4为一对,由同一组信号驱动,同时导通/关端; T2、T3为另一对,由另一组信号驱动,同时导通/关端。 两对开关管轮流通/断,在变压器原边线圈中形成正/负交变的脉冲电流。

主要优点: 与推挽结构相比,原边绕组减少了一半,开关管耐压降低一半。

主要缺点: 使用的开关管数量多,且要求参数一致性好,驱动电路复杂,实现同步比较困难。 这种电路结构通常使用在1KW以上超大功率开关电源电路中。

电路的结构类似于全桥式,只是把其中的两只开关管(T3、T4)换成了两只等值大电容C1、C2。

罗姆   ROHM   DC/DC电路

主要优点:

具有一定的抗不平衡能力,对电路对称性要求不很严格;

适应的功率范围较大,从几十瓦到千瓦都可以;

开关管耐压要求较低;

电路成本比全桥电路低等。

小结

以上本文简要介绍了单端正激式、单端反激式以及推挽式的电路图以及其各自的优缺点,希望对读者有所帮助。

更多详情请查看:罗姆DC/DC转换器

继续阅读
无线电的诞生与无线电技术的实现及应用

提起无线电,许多人或许觉得这是非常老旧的观念,实际上,无线电在我们的生活中占据着非常重要的地位。当前,无线电早已成为受众最广泛的大众媒介。据工业和信息化部资料显示,全球95%的人口都可以接收到无线电信号。在我们的生活中,无线电也无处不在,手机的使用、Wi-Fi的连接,看不见摸不着的无线电为人们的日常生活带来诸多便利。但是由于无线电技术的复杂性,目前公众对无线电知识还了解得不多,今天就让我们一起走进无线电的世界吧。

保护“非放大器”方法详解

深入了解非放大器问题可能具有挑战性,必须考虑许多因素。放大器类型、外围电路以及输入和输出电压都很重要。保护失放的最佳方法是确保与失放接触的任何电路的电源也处于关闭状态。如果无法做到这一点,请确保限制进入失放的电流。如果您需要其他帮助,请务必咨询应用工程师。

智能汽车虚拟化Hypervisor技术简述

随着 ICT 技术的发展,单 SOC 算力可以承担更多业务,网络带宽拓展及低时延、区分服务等特性使得业务部署、功能分配更加灵活,比如 : 感知、融合、规划、控制、执行可分离解耦,汽车业务功能可分可合、可软件定义。电子电气架构从分布式架构到域集中式架构,再到中央集中式架构转变,分散的 ECU功能集成到域控制器甚至车载中央计算机,这就是多域融合。

人脸侦测的原理与可能遇到的潜在问题

当我们谈到人物侦测时,最广为人知的方法就是「人脸侦测」(detection),藉由分析人脸的器官部位特征,如:眼睛、鼻子、嘴巴等,可以得知画面中是否有人脸。另一个进阶应用为「人脸识别」(recognition),用来辨识人脸的身分为何,此技术需要事先建立数据库搜集每个人员的脸部特征,因此常引来隐私权的争议。本文将探讨人脸侦测的原理,并说明可能遇到的潜在问题。

一种高性能电流传感器的应用方案

在电机控制应用中,电流检测是电机反馈的基础,可以使用几种结构拓扑来开发这种电流传感器,它们各有利弊。基于AMR的电流传感解决方案不仅可以解决性能、可靠性和安全性等问题,还有助于解决电路保护、成本效益、外形尺寸和其他重要的设计问题。