三极管和MOS管的特性与原理对比

分享到:

社会的飞速发展,人们生活质量的不断提高,电子产品逐渐进入我们的生活,而且与我们的生活发生了不可分割的关系,与此同时人们也对电子产品性能的要求也在不断的提高,众所周知在生产电子产品的时候,一定离不开电子元器件的功劳,其中最典型的代表人物莫过于MOS管与三极管,它们就仿佛是电子产品的保护伞一般,一直保护着电子产品不受静电的侵害,以下本文将详细介绍二者的基本特性与应用设计以及二者之间的区别。

1 三极管和MOS管的基本特性

三极管是电流控制电流器件,用基极电流的变化控制集电极电流的变化。 有NPN型三极管和PNP型三极管两种,符号如下:

罗姆   ROHM   MOSFET   三极管

MOS管是电压控制电流器件,用栅极电压的变化控制漏极电流的变化。 有P沟道MOS管(简称PMOS)和N沟道MOS管(简称NMOS),符号如下(此处只讨论常用的增强型MOS管):

罗姆   ROHM   MOSFET   三极管

2 三极管和MOS管的正确应用

(1)NPN型三极管

适合射极接GND集电极接负载到VCC的情况。 只要基极电压高于射极电压(此处为GND)0.7V,即发射结正偏(VBE为正),NPN型三极管即可开始导通。 基极用高电平驱动NPN型三极管导通(低电平时不导通); 基极除限流电阻外,更优的设计是,接下拉电阻10-20k到GND;

优点是:①使基极控制电平由高变低时,基极能够更快被拉低,NPN型三极管能够更快更可靠地截止; ②系统刚上电时,基极是确定的低电平。

(2)PNP型三极管

适合射极接VCC集电极接负载到GND的情况。 只要基极电压低于射极电压(此处为VCC)0.7V,即发射结反偏(VBE为负),PNP型三极管即可开始导通。 基极用低电平驱动PNP型三极管导通(高电平时不导通); 基极除限流电阻外,更优的设计是,接上拉电阻10-20k到VCC;

优点是:①使基极控制电平由低变高时,基极能够更快被拉高,PNP型三极管能够更快更可靠地截止; ②系统刚上电时,基极是确定的高电平。

罗姆   ROHM   MOSFET   三极管

所以,如上所述:

对NPN三极管来说,最优的设计是,负载R12接在集电极和VCC之间。 不够周到的设计是,负载R12接在射极和GND之间。

对PNP三极管来说,最优的设计是,负载R14接在集电极和GND之间。 不够周到的设计是,负载R14接在发射极和VCC之间。 这样,就可以避免负载的变化被耦合到控制端。 从电流的方向可以明显看出。

(3)PMOS

适合源极接VCC漏极接负载到GND的情况。 只要栅极电压低于源极电压(此处为VCC)超过Vth(即Vgs超过-Vth),PMOS即可开始导通。 栅极用低电平驱动PMOS导通(高电平时不导通); 栅极除限流电阻外,更优的设计是,接上拉电阻10-20k到VCC,使栅极控制电平由低变高时,栅极能够更快被拉高,PMOS能够更快更可靠地截止。

(4)核磁阻

适合源极接GND漏极接负载到VCC的情况。 只要栅极电压高于源极电压(此处为GND)超过Vth(即Vgs超过Vth),NMOS即可开始导通。 栅极用高电平驱动NMOS导通(低电平时不导通); 栅极除限流电阻外,更优的设计是,接下拉电阻10-20k到GND,使栅极控制电平由高变低时,栅极能够更快被拉低,NMOS能够更快更可靠地截止。

罗姆   ROHM   MOSFET   三极管

所以,如上所述:

对PMOS来说,最优的设计是,负载R16接在漏极和GND之间。 不够周到的设计是,负载R16接在源极和VCC之间。

对NMOS来说,最优的设计是,负载R18接在漏极和VCC之间。 不够周到的设计是,负载R18接在源极和GND之间。

3 设计原则

为避免负载的变化被耦合到控制端(基极Ib或栅极Vgs)的精密逻辑器件(如MCU)中,负载应接在集电极或漏极。

4 工作原理对比

这里以NMOS和NPN三极管为例,并且以电子流(而非电流)方向为主来说明。
5

①符号

MOS管一般可以简化为三个极,分别是栅极(G)源极(S)和漏极(D),MOS器件是电压控制型器件,用栅极电压来控制源漏的导通情况;

BJT三极管有三个极,分别是基极(B)发射极(E)和集电极(C),三极管是电流控制型器件,用基极电流来控制发射极与集电极的导通情况;

②截止区

NPN三极管也一样,如果偏压小于阈值电压,也相当于两个背靠背的二极管,不导通;

③线性区

NMOS如果栅上加正电压,就会在其下感应出相反极性的负电荷,从而产生N型沟道,使源漏导通。如果不考虑源漏电压影响,则栅压高一点,产生的沟道就宽一点,导通能力就大一点,这就是线性区。

NPN管如果BE结加正向偏置导通,电子就会进入到基区。除了被基区的P型空穴俘获外,它们有两个地方可以去:一个是从基极流出,一个是被集电极更高的正电压吸收。集电极电压越高,能收集到的电子就会越多,这也是线性变化的。

④饱和区

NMOS在漏极电压比较高时,会使沟道夹断,之后即使电压升高,电流不会再升高,因此叫做饱和区;

NPN三极管在集电极电压比较高时,也会几乎全部收集到从发射极过来的电子,电压再升高也没有办法收集到更多,也是它的饱和区。

⑤电流电压曲线

在线性区,随着电压升高,源漏电流或集电极电流上升。而在饱和区电压升高,电流基本都保持不变。二者的趋势基本一致。

小结

总的来说,MOS管在高频应用中更为常见,而三极管在低频和功率应用中具有优势。

关键词:罗姆MOSFET

继续阅读
一种新型的聚合物光斑尺寸转换器设计

硅光子技术是一种光通信技术,使用激光束代替电子半导体信号传输数据,是基于硅和硅基衬底材料,利用现有CMOS工艺进行光器件开发和集成的新一代技术。最大的优势在于拥有相当高的传输速率,可使处理器内核之间的数据传输速度快100倍甚至更高,功率效率也非常高,因此被认为是新一代半导体技术。

IGBT开通过程详解

一开始我们简单介绍过IGBT的基本结构和工作原理,不同的行业对使用IGBT时,对于其深入的程度可能不一样,但是作为一个开关器件,开通和关断的过程,我觉得有必要了解一下。随着载流子寿命控制等技术的应用, IGBT关断损耗得到了明显改善; 此外,大功率IGBT 器件内部续流二极管的反向恢复过程,极大地增加了IGBT 的开通损耗,因此,IGBT的开通过程越来越引起重视。

矢量网络分析仪基础介绍

我们了解到,“网络分析器”是指用于各种“网络”的工具(如图1所示)。举例来说,现在大多数人都使用在4G或5G“网络”上运行的蜂窝电话或移动电话。此外,我们的家庭、办公室和商业场所多数也配备有Wi-Fi或无线局域网“网络”。此外,许多计算机和服务器都被设置在“网络”中,这些网络与云相连接。每个“网络”中都有一个特定的网络分析器工具,用于验证性能、绘制覆盖区域地图并确定问题所在区域。

功率器件结温和壳顶温度的差异

在设计开关电源、电机驱动以及其他电力电子变换器时,通常会采用功率器件。为了保证这些器件在合理安全的工作范围内,需要测量功率MOSFET或IGBT结温。因为功率器件的结温与其安全性和可靠性直接相关。测量功率器件结温通常有两种方法:热电偶和红外热成像测温仪。

IGBT中的密勒效应分析

IGBT 的开关时间应综合考虑,快速开通和关断有利于提高工作频率,减小开关损耗,但过快的开关速度会造成很高的尖峰电压。当IGBT 开通后,驱动电路需提供足够的电压、电流幅值,使 IGBT 在正常工作及过载情况下不至于退饱和而损耗。驱动电路中门极电阻对工作性能有较大影响。