实现微小信号放大,罗姆运放必不可少!

分享到:

运算放大器的使用是电子工程师的必修课,运放的使用非常有讲究,用的不好,很容易得不到想要的结果,下面我们就一起来看看运放究竟要怎么使用。
 
一、如何实现微弱信号放大?
 
传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?
 
对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励,电流转电压放大器,和同步解调三部分。需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。另外同步解调需选用双路的SPDT模拟开关。
 
另外,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。有网友对这类问题的解决也进行了补充,如:
 
1) 电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在运放的设计手册中均可以查到。
 
2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。
 
3)对于传感器输出的nA级,选择输入电流pA级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好了,就是成本高些。
 
4)若选用非仪表运放,反馈电阻就不要太大了,M欧级好一些。否则对电阻要求比较高。后级再进行2级放大,中间加入简单的高通电路,抑制50Hz干扰。
 
二、运算放大器的偏置设置
 
在双电源运放在接成单电源电路时,工程师朋友在偏置电压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?有的网友建议用参考电压源,理由是精度高,此外还能提供较低的交流旁路,有的网友建议用电阻,理由是成本低而且方便。对此,我认为,双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。这种基准电压使系统设计得到最小的噪声和最高的PSRR。但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。
 
三、 如何解决运算放大器的零漂问题?
 
有网友指出,一般压电加速度传感器会接一级电荷放大器来实现电荷——电压转换,可是在传感器动态工作时,电荷放大器的输出电压会有不归零的现象发生,如何解决这个问题?
 
对此,网友分析道,有几种可能性会导致零漂:1)反馈电容ESR特性不好,随电荷量的变化而变化;2)反馈电容两端未并上电阻,为了放大器的工作稳定,减少零漂,在反馈电容两端并上电阻,形成直流负反馈可以稳定放大器的直流工作点;3)可能挑选的运算放大器的输入阻抗不够高,造成电荷泄露,导致零漂。
 
有网友还从数学分析的角度对造成零漂的原因进行了详细分析,认为除了使干扰源漂移小以外还必须使传感器、缆线电阻要大,运放的开环输入阻抗要高、运放的反馈电阻要小,即反馈电阻的作用是为了防止漂移,稳定直流工作点。但是反馈电阻太小的话,也会影响到放大器的频率下限。所以必须综合考虑!
 
对于电荷放大器输出电压不归零的现象,一般采用如下办法来解决:
 
1)采用开关电容电路的技巧,使用CDS采样方式可以有效消除offset电压;
 
2)采用同步检测电路结构,可以有效消除offset电压。
 
 
最近,ROHM推出了面向处理微小信号的光传感器、声纳及硬盘中使用的加速度传感器等需要高精度感测的工业设备应用,开发出业界顶级的低噪声CMOS运算放大器“LMR1802G-LB”,LMR1802G-LB融合ROHM的“电路设计”、“工艺”、“布局”三大模拟技术优势开发而成,是一款等效输入电压噪声密度(以下简称“噪声性能”)仅为市场流通产品(以下简称“传统产品”)的1/2左右(1kHz 时2.9nV/√Hz,10Hz 时7.8nV/√Hz)、低噪声性能具有绝对优势、传感器信号检测性能显著提升的运算放大器。另外,与低噪声性能呈矛盾关系的相位裕量和容性负载驱动也分别实现了业界顶级性能(相位裕量68°,容性负载500pF),还是一款具备业界顶级的低噪声性能,并具有卓越的稳定性(不易振荡,易于操作)的运放产品。这使得准确地放大仅几µV的电压也成为可能,非常有助于促进需要高精度感测的工业设备以及家电发展。
继续阅读
ROHM开发出充电控制IC“BD71631QWZ”,支持新型二次电池等低电压充电

全球知名半导体制造商ROHM(总部位于日本京都市)开发出一款充电控制 IC“BD71631QWZ”,该产品支持搭载二次电池的无线耳机等可穿戴设备以及智能显示器等小而薄的物联网设备的低电压充电。

为实现无碳社会,罗姆修订2030年温室气体减排目标

全球知名半导体制造商罗姆(总部位于日本京都市)为了实现无碳社会,修订了2030年中期环境目标。同时,罗姆宣布支持气候相关财务信息披露工作组(Task Force on Climate-related Financial Disclosures,以下简称“TCFD”)*1的建议,并决定按照TCFD的建议开展相关信息披露工作。

ROHM开发出防水等级达IPX8的小型高精度气压传感器IC“BM1390GLV”

全球知名半导体制造商ROHM(总部位于日本京都市)面向白色家电、工业设备和小型物联网设备,开发出防水等级达IPX8*1的小型高精度气压传感器 IC“BM1390GLV(-Z)”。

五个技巧让传感器变得更简单

传感器的数量在整个地球表面和人们生活周遭空间激增,为全世界提供了各种各样的数据信息。这些价格亲民的传感器是物联网(IoT)发展和我们社会面临的数字化革命的驱动因素。然而,连接和获取传感器的数据并非总是一帆风顺,下面将介绍5个小窍门,以帮助工程师在与传感接口的战斗中脱颖而出。

空气净化器中空气质量传感器的作用

提到空气净化器,从购买到使用,网上有各种“指南”,但大部分内容都是相同的,无非是教用户如何买和怎么用。但经过这么长时间的“学习”,你真的能玩转家里的空气净化器吗?今天让我们来谈谈绝大部分净化器标配,但99%的用户可能会忽略它——空气质量传感器。