全SiC功率模块运用要点:栅极驱动

分享到:

栅极驱动的评估事项:栅极误导通

首先需要了解的是:接下来要介绍的不是全SiC功率模块特有的评估事项,而是单个SiC-MOSFET的构成中也同样需要探讨的现象。在分立结构的设计中,该信息也非常有用。

“栅极误导通”是指在高边SiC-MOSFET+低边SiC-MOSFET的构成中,SiC-MOSFET切换(开关)时高边SiC-MOSFET的栅极电压产生振铃,低边SiC-MOSFET的栅极电压升高,SiC-MOSFET误动作的现象。通过下面的波形图可以很容易了解这是什么样的现象。

1

绿色曲线表示高边SiC-MOSFET的栅极电压VgsH,红色曲线表示低边的栅极电压VgsL,蓝色曲线表示Vds。这三个波形都存在振铃或振荡现象,都不容乐观。比如一旦在低边必须关断的时间点误导通的话,将有可能发生在高边-低边间流过直通电流(Flow-through Current)等问题。

这种现象是SiC-MOSFET的特性之一–非常快速的开关引起的。低边栅极电压升高是由切换到高边导通时产生的Vd振铃、和低边SiC-MOSFET的寄生栅极寄生电容引起的。

全SiC功率模块的开关速度与寄生电容

下面通过与现有IGBT功率模块进行比较来了解与栅极电压的振铃和升高有关的全SiC功率模块的开关速度和寄生电容的特征。

开关速度:与IGBT的比较

下图是开关导通时和开关关断时的dV/dt、即开关速度与IGBT模块的比较。SiC模块的开关导通时的dV/dt与IGBT模块几乎相同,依赖于外置的栅极电阻Rg。关断时SiC模块没有像IGBT那样的尾电流,因此显示与导通时同样依赖于外置栅极电阻Rg的dV/dt。

2

寄生电容:与IGBT的比较

MOSFET(IGBT)存在栅极-漏极(集电极)间的Cgd(Cgc)、栅极-源极(发射极)间的Cgs(Cge)、漏极(集电极)-源极(发射极)间的Cds(Cce)这些寄生电容。其中与低边栅极电压升高相关的是Cgd和Cgs。
下面的左图表示Cgd(Cgc)、Cgs(Cge)与Vds(Vce)之间的关系。未指定是SiC模块的曲线是IGBT的曲线。如各曲线所示,相应寄生电容同等,其特性也相似。右图为Cgd(Cgc)和Cgs(Cge)的比,被称为“栅极寄生电容比”,是对低边栅极电压升高有影响的参数。这里给出了同等程度的寄生电容,以便根据左图的电容值直观地考量。

3

栅极电压升高的机制

前面也提到过,低边SiC-MOSFET的栅极电压升高是由高边SiC-MOSFET开关导通时的dV/dt速度太快引起的,因低边SiC-MOSFET的栅极寄生电容与栅极阻抗而产生栅极电压升高⊿Vgs。

SiC-MOSFET的开关导通速度依赖于外置栅极电阻Rg,如上图所示,Rg越小则dV/dt越大。

关于栅极寄生电容,它是本质上存在且无法调整的,因此在存在一定量的栅极寄生电容的前提下,将低边栅极阻抗作为⊿Vgs的因数,来探讨可调整的外置栅极电阻Rg。

该图表示低边栅极电压升高⊿Vgs和高边外置栅极电阻Rg_H及低边外置栅极电阻Rg_L之间的关系。从图中可以看出,高边的Rg_H越小,即dV/dt速度越快,以及低边的外置栅极电阻越大,⊿Vgs越大。

4

继续阅读
SiC会取代IGBT吗?它的大规模商用面临哪些难点

我们知道,车用功率模块(当前的主流是IGBT)决定了车用电驱动系统的关键性能,同时占电机逆变器成本的40%以上,是核心部件。

SiC IGBT--PET的未来?

SiC SBD和 MOS是目前最为常见的 SiC 基的器件,并且 SiC MOS 正在一些领域和 IGBT争抢份额。我们都知道,IGBT 结合了 MOS 和 BJT 的优点,第三代宽禁带半导体SiC 材料又具有优于传统 Si 的特性,那么为什么见得最多的却是 SiC MOS,SiC IGBT 在哪儿呢?

ROHM的SiC功率元器件被应用于UAES的电动汽车车载充电器

全球知名半导体制造商ROHM(总部位于日本京都市)的SiC功率元器件(SiC MOSFET*1)被应用于中国汽车行业一级综合性供应商——联合汽车电子有限公司(United Automotive Electronic Systems Co., Ltd. ,总部位于中国上海市,以下简称“UAES公司”)的电动汽车车载充电器(On Board Charger,以下简称“OBC”)。UAES公司预计将于2020年10月起向汽车制造商供应该款OBC。

宽禁带半导体材料——碳化硅的力量

为什么这一点如此重要?因为碳化硅的特性特别适用于电动汽车、快速充电站、可再生能源和各种工业应用中的各种电力元件和设备...

电动汽车的 BMS 解决方案,SiC功率元器件的作用在显现

”电动汽车续航和充电问题如何双解?“、 “有效解决电动汽车安全挑战,SiC功率元器件的作用在显现”、 “BMS整合优化持续进行,电池寿命有望得到改善”、 三个热点话题,我猜你也很好奇!一起来看看罗姆半导体(深圳)有限公司技术中心助理经理林其锋先生是如何解答的吧~