业界首创!罗姆开发出搭载手机来电RF噪声消除功能的适用于音频设备的音频处理器

分享到:

日本知名半导体制造商ROHM(总部位于日本京都)开发出适用于音频设备的音量/音质调整产品---汽车音响用音频处理器"BD37033FV / BD37034FV / BD37068FV"、AV接收器用音频处理器"BD34701KS2"。
"BD37033FV / BD37034FV / BD37068FV / BD34701KS2"是累计出货量达5000万个以上、已获高度好评的ROHM音频处理器"BD37xxx 系列""BD34xxx 系列"的新增产品。
本产品在保持现有系列产品特点的基础上,利用ROHM多年积累的模拟技术,于业界首家※搭载了将手机来电噪声对音频设备的影响抑制在1/10以下的RF噪声消除功能。
该产品已于2013年9月份开始出售样品(样品价格500日元),于2013年12月份开始暂以月产50万个的规模投入量产。前期工序的生产基地为ROHM Hamamatsu Co., Ltd.(日本滨松市),工期工序的生产基地为ROHM Electronics Philippines Inc.(菲律宾)。

※截至2013年12月24日 ROHM调查数据
音频设备播放时进行音量/音质调整的音频处理器有数字方式和模拟方式两种,数字方式在音量减小时存在称为"数据位丢失"的本质上的音质劣化弊端,需要更高音质时,模拟方式是最佳选择。针对这些市场,ROHM利用所擅长的模拟技术,在高音质的音频处理器开发上一直引领着业界的发展。
近年来,随着网络传输和SACD(Super Audio CD)等超越CD标准的高分辨率音源的普及,以及HEV和EV等的静音化发展,对音频设备提出了更高音质的要求。不仅如此,希望消除经常放在音频设备附近的手机来电时发生的RF噪声的需求日益高涨。

本产品保持了现有系列产品的特点---音响产品中最重要的特性---低失真和低噪声带来的高音质以及音量/音质调整时的POP噪声对策"Advanced Switch(高级开关)"。作为新功能,不仅具备业界首创的消除手机来电噪声对音频设备的影响的RF噪声消除功能,还具备外置功率放大器所需要的整机电源OFF时的防漏音功能。
这些功能是利用ROHM多年来反复在本公司电波暗室进行EMC试验、在本公司试音室进行试听而获得的技术诀窍以及通过仿真无法再现的频段的模拟技术,不断追求高音质与满足时代需求而实现的。
ROHM今后还会继续完善利用模拟技术的、满足时代需求的、高音质音频处理器的产品阵容。

<特点>

1.手机的来电噪声抑制在1/10以下
业界首创搭载RF噪声消除功能,无需外置部件和新对策,消除手机来电时对音频设备带来的令人不适的噪声。

image_gallery

2.使用外置功率放大器时的防漏音功能 (BD37034FV)
搭载防漏音功能,使用外置功率放大器、在关掉整机电源时产生的漏音降低到1/30以下,可有效防止漏音。

image_gallery (1)
3.通过消减低频噪声实现高音质
利用多年积累的模拟技术,成功地大幅降低了通过仿真无法再现的低频噪声。

image_gallery (2)

4.降低音量/音质调整时的POP噪声
ROHM独有的Advanced Switch(高级开关)可降低音量/音质调整时产生的POP噪声,因此,可实现自然、流畅、平稳的音量/音质调整。

image_gallery (3)
<音频处理器的产品阵容>

image_gallery (4)
○新产品的主要性能

推荐应用 产品名 封装 工作电压
(V)
RF
噪声
降低
POP
噪声
降低
输入源
(ch)
音量
(ch)
音量
控制
(ch)
音调
控制
(段)
外部
输入
(ch)
Hi-
Voltage
输出
汽车音响 BD37033FV SSOP-B28 7.0~9.5 5 2 6 3 - -
BD37034FV SSOP-B28 VCC=7.0~9.5
VCCH=VCCL~13.0
5 2 6 3 -
BD37068FV SSOP-B40 VCC=7.0~9.5
VCCH=VCCL~17.0
6 6 - 6
AV接收器 BD34701KS2 SQFP-T52 ±6.5~±7.5 12 8 - 8


<术语解说>

高分辨率音源(Hi-Res音源)、SACD(Super Audio CD)
一般用音乐CD播放的音乐,其采样频率为44.1kHz、量化比特数为16bit,而高分辨率音源其采样频率达 48kHz以上、量化比特数达24bit以上则较为普遍。因此,高分辨率音源的信息量要比常规的音乐CD明显多得多。
其中,SACD为新一代CD标准之一,采样频率为2.8224MHz,量化比特数为1bit。
RF(无线频段的电磁波) 噪声
一般指通信设备产生的高频噪声。本文所说的RF噪声是指将手机等放在音频设备的附近,在进行通信时导致音频设备产生噪声。
例如,手机采用TDMA、CDMA等多种通信方式进行通信,此时产生的高频干扰音频电路、成为噪声给其他设备带来影响。
失真(总谐波失真)
表示信号(声音)失真程度的值,其值越小表示失真越少。
POP噪声
一般指各种操作状态下产生的单纯的"啪""啵"等一切爆破音,本文指音量/音质调整时(音频处理器的电路切换时)产生的噪声。

继续阅读
科普——半导体宽禁带的用途及意义

科技的不断创新带动了半导体的不断发展,今天我们的主题便是——半导体宽禁带。禁带宽度是半导体的一个重要特征参量,而其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关...

资料篇——关于半导体器件命名方法

你知道中国关于半导体器件型号是如何命名的吗?还有分立器件等.....

碳纳米管全球高校应用研究7大领域!

美国威斯康星大学麦迪逊分校研究团队制备出了首个性能超越硅基晶体管的碳纳米晶体管,其电流承载能力为硅基晶体管的1.9倍,科学家们成功制备出了2.54平方厘米的晶片,并将在下一步研究如何扩大生产规模,实现量产。

深入了解, SiC MOSFTE 中的导通电阻 Ron~

以前小R给大家带来许多SiC MOSFTE的相关知识,以及SiC MOSFTE 的特点特性,今天我们整点不一样的!聊聊关于SiC MOSFTE 的导通电阻 Ron~

半导体二极管中的PN结理论

当N型材料与P型材料融合在一起时,会形成PN结,从而形成半导体二极管。之前我们了解了如何通过向硅原子中掺入少量锑来制造N型半导体材料,以及如何通过向另一硅原子中掺入硼来制造P型半导体材料。这一切都很好,但是由于这些新掺杂的N型和P型半导体材料是电中性的,因此它们自己的作用很小。但是,如果我们将这两种半导体材料连接(或融合)在一起,它们的行为将以非常不同的方式融合在一起,并产生通常称为“ PN结 ”的东西。