如何选取正确的DC/DC转换器

分享到:

一、正确理解DC/DC转换器
 
DC/DC转换器为转变输入电压后有效输出固定电压的电压转换 器。DC/DC转换器分为三类:升压型DC/DC转换器、降压型DC/DC转换器以及升降压型DC/DC转换器。根据需求可采用三类控制。PWM控制型效 率高并具有良好的输出电压纹波和噪声。PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。PWM/PFM转换型小负载时实行PFM控制,且在重 负载时自动转换到PWM控制。目前DC-DC转换器广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。在电路类型分类上属于斩波电路。
 
 
二、大功率工业设备需要什么样的DC/DC转换器?
 
今天我们聊到的是大功率工业设备,为确保受到因雷电等导致的突发性浪涌电压时产品的安全性,要求产品的耐压水平高于输入电压。针对大功率的通信基站和工业设备领域,ROHM目前开发出耐压80V的MOSFET内置型DC/DC转换器“BD9G341AEFJ”。 它可支持高达76V的输入电压,对于通信基站和FA设备的主要电压范围 48V下的突发浪涌电压拥有很大余量,可实现应用的高可靠性。
 
2
 
"BD9G341AEFJ"采用功率系统工艺0.6µm的高耐压BiCDMOS,作为非绝缘型DC/DC转换器,实现了80V的业界最高耐压水平,在ROHM的DC/DC转换器产品阵容中,也是耐压最高的产品。利用ROHM擅长的模拟设计技术优势,在80V级的DC/DC转换器中,还实现了业界最高的转换效率。与一般产品相比,本产品即使输出引脚发生意外短路(接触),也可通过保护电路抑制发热从而防止产品受损,因此还非常有助于提高应用产品的可靠性。不仅如此,这些优势仅通过简单的小型8引脚封装即完全实现,可减少安装面积和周边零部件数量。
 
 
三、BD9G341AEFJ的特点详情
 
1. 实现业界最高级别80V高耐压
采用业界最尖端的功率系统工艺0.6µm的高耐压BiCDMOS,在非绝缘型产品中实现业界最高级别80V高耐压的MOSFET内置型DC/DC转换器。另外,可支持高达76V的输入电压,对于通信基站和FA设备的主要电压范围 48V下的突发浪涌电压拥有很大余量,可实现应用的高可靠性。
 
2. 在80V级DC/DC转换器中,实现业界最高效率
高效率设计,更节能
利用ROHM擅长的模拟设计技术优势,在80V级的DC/DC转换器中实现了业界最高的功率转换效率。与一般产品相比,功率效率最大可提高19%、稳定运行时也可提高1.5%(按振荡频率300kHz、电源电压48V、输出电压5V设定时)的电力效率,有助于实现工业设备的节能化。
 
3
 
3. 防止损坏的输出引脚保护,可靠性更高
独有的保护电路,可靠性更高
按一般产品的保护功能,当输出引脚发生短路(接触)时,因无法抑制产生的热量而使IC过热,最终使IC损坏。
本产品具备独有的保护功能,即使输出引脚发生意外短路,也可抑制发热,防止产品受损。因此,非常有助于提高应用产品的可靠性。
 
4
 
4. 简单的小型封装,减少安装面积和周边零部件数量
利用ROHM多年积累的模拟设计技术,仅通过小型8引脚封装(宽4.9mm×长6.0mm×高1.0mm)即实现了80V级的耐高压DC/DC转换器。同时,将一般产品本来需要的17个周边零部件削减到12个,有助于减少设计工时。
 
 
四、ROHM电源系统技术优势
 
为了不断提升电源系统的可靠性和性能,ROHM在设计方式上进行了诸多创新。首先,绝缘技术和多芯片结构是一大亮点。通过高绝缘性技术,ROHM实现了高耐压模块与低耐压模块分离的结构,因而能够同时实现高可靠性和更高性能。
 
其次,支持电源IC的SiC-MOSFET也是ROHM的一大优势。对于耐压超过1000V的MOSFET元器件,采用硅很难创造出导通损耗足够低的器件, 但通过SiC则可以实现。与作为耐高压的开关元件被广泛应用的硅材质IGBT相比,SiC-MOSFET的开关损耗仅为1/5左右,因此,在驱动频率越来 越高的设备小型化(过滤器、冷却机构)和功率转换效率的提升等方面有望获得显著效果。
 
此外,ROHM可提供整体解决方案的支持服务。不仅包括电源IC解决方案,还包括从分立元件以及周边元器件在内的解决方案,提供从设计到量产完成的技术支持,帮助用户从一次电源(AC/DC)到POL电源(DC/DC)构建电源系统。
 
在生产模式方面,多数日系厂商都采取一条龙生产的模式,ROHM也不例外。对此,ROHM公司LSI商品开发本部工业设备战略部部长上林忠史表示,将 ROHM最尖端的功率系统工艺和垂直统合型一条龙生产线,可确保产品的特性,并能够为客户提供稳定的长期供货标准。面向工业设备市场,ROHM已开发出众 多新产品。电源产品包括电源管理、电机驱动器、功率元器件/模块、智能功率模块。在与工业相关市场的IoT、M2M领域,主要产品有传感器、低功耗 MCU、无线通信模块等,这些都是ROHM利用自身研发实力与生产制造实力相结合的高品质产品。
 

5

相关产品:

DC/DC转换器:BP5324A

DC/DC转换器:BP5512A

DC/DC转换器:BP5510-24

继续阅读
MOS管过流保护:技术难点与保护原理深探

MOS管过流保护的核心原理是通过监测负载电流,并在电流超过设定阈值时切断MOS管的导通状态,以防止电路受损。实现这一保护的关键在于使用过流检测电阻和比较器来检测和控制电流。在实际应用中,还需考虑SOA等辅助电路以增强保护效果。

弱电场下,MOSFET漂移区性能优化秘籍

MOSFET的半导体漂移区是其核心部分,负责在电场作用下实现载流子的定向移动以形成电流。在弱电场配置下,为提升性能,需平衡漂移区的传输效率和功耗,通过精确控制其宽度、长度和掺杂浓度来实现。此外,设计特殊漂移区形状、优化栅极电压、降低界面态密度和减少表面电荷等措施也有助于提升性能。

多个MOS管并联:优缺点解析,驱动电路新篇章

在多个MOS管并联驱动电路中,尽管理想情况下电流应均匀分配,但材料、工艺、温度等差异导致实际中难以实现完全均流,可能引发过流失效和可靠性问题。此外,并联MOS管在工作时产生的热量分布不均可能导致局部过热,影响性能并引发安全问题。设计此类驱动电路复杂度高,增加了成本。

预见未来:MOS并联驱动电路的新应用浪潮

多个MOS管并联驱动电路的技术原理及其在实际应用中的性能提升方法。并联方式能增大电路的总电流处理能力,但也可能带来电流分配不均、热效应等问题。为此,我们提出了采用均流技术、散热技术以及优化驱动电路等方法来提升其性能。

MOS管并联驱动:提升效能的关键技术与策略

MOS管是通过改变电压来控制电流的器件,多个MOS管并联使用可以共同承担电流负载,实现更大功率输出。然而,并联方式可能带来电流分配不均、热效应等问题。因此,需采用均流技术和散热技术来确保每个MOS管均匀分担电流并降低热效应。