ROHM开发出支持高分辨率音源的汽车音响用声音处理器"BD34602FS-M" ~采用音质设计技术,不受噪声影响,完美展
全球知名半导体制造商ROHM面向支持高分辨率音源*1) 播放、追求高音质的汽车导航和汽车音响(以下简称“车载音响”)开发出可进行音响音量调整和混音的声音处理器“BD34602FS-M”。
“BD34602FS-M”是在累计销售业绩(最近5年)达1亿2000万个以上并受到高度好评的ROHM声音处理器中,为追求车载音响所需特性并着眼于高音质,而采用ROHM独有的音质设计技术的产品。同时,作为车载音响用声音处理器,实现业界最高级别的特性(仅0.0004%的低失真率*2) 、仅3.1µVrms的低本底噪声*3)),从而成功实现毫无保留地提取音源信息量,并准确地展现声像(音源的位置,距离感)。因此推动了汽车内部的静音技术和高分辨率音源的普及,有助于提高高音质需求日益高涨的车载音响音质。
本产品已于2016年8月开始销售样品(样品价格 2,000日元/个:不含税),并于2017年1月开始以月产10万个的规模投入量产。前期工序的生产基地为ROHM滨松株式会社(日本滨松市),后期工序的生产基地为ROHM Integrated Systems (Thailand) Co., Ltd.(泰国)。
今后,ROHM将继续扩充采用音质设计技术的产品阵容,满足现代的高音质需求。
<背景>
近年来,EV和PHV的出现使汽车的静音技术和高分辨率音源日益普及。在车载音响领域对于音源信息量比以往更需要准确的表现力。
另一方面,音响用SoC*4) 作为车载音响的核心,随着制造工艺的微细化发展而呈现低电压趋势,可处理的音频信号变小,本底噪声相对增加。这个课题的解决方法要求在SoC的后段具备低噪声且高音质的模拟音量。
<特点>
1.采用优化ROHM独有参数的音质设计技术,实现高音质
本产品采用了ROHM全新开发的独创音质设计技术。以影响IC音质的电路结构和电气特性为中心,优化28个独有参数,调整音量时可毫无保留地提取音源信息量,成功地准确展现车载音响所需的汽车内部声像(音源的位置,距离感),受到汽车音响制造商们的一致好评。
●本产品音质设计的主要内容
・IC中点偏置电路噪声降低约20%
・将音量电路产生的低频噪声降低到1/10
・通过布局技巧来抑制信号间的干扰,从而改善瞬态特性,提高声像(音源的位置,距离感)和分辨率(声音清晰程度)等,从而可大量提取音源信息量。
2.音响产品的重要特性达到业界最高性能
利用ROHM多年积累的技术经验,并运用在仿真中无法再现区域的模拟设计技术优势,在车载音响用声音处理器中达到了业界最高级别的低失真率(仅0.0004%)和音量衰减时的低本底噪声(仅3.1µVrms)。
3.混频电路搭载ROHM独有的POP噪声降低技术
本产品搭载了导航语音和免提语音中断功能(以下简称“混频”)。
通常在开/关混频时会出现“噗呲”等令人不适的POP噪声,利用ROHM独有的“Advanced Switch(高级开关)”技术降低了POP噪声。
<主要功能和电气特性>
<术语解说>
*1) 高分辨率音源(High-resolution sound source)
一般音乐用CD播放的音乐采样频率为44.1kHz,量化位数为16bit,而高分辨率音源的采样频率96kHz以上、量化位数24bit以上较为普遍。即高分辨率音源的信息量比普通音乐CD多得多,因而可实现高音质。
*2) 失真率(总谐波失真)
表示信号(声音)失真程度的值,值越小表示失真越小。
*3) 本底噪声
一般为无输入信号且无声时的噪声。本文中是指音量衰减到极限时的噪声。
*4) SoC(System on Chip)
一般指集成了系统工作所需功能的IC。本文中表示从音源提取和输出音频信号等的一系列功能。
中国上海,2025年6月10日——全球知名半导体制造商ROHM(总部位于日本京都市)今日宣布,推出新SPICE模型“ROHM Level 3(L3)”,该模型提升了收敛性和仿真速度。
SiC 功率模块基于 SiC 材料禁带宽度大、击穿电场强度高等特性,其芯片中 SiC MOSFET 与 SiC SBD 协同降低导通和开关损耗,搭配倒装芯片等先进封装技术,在多领域实现高效能功率转换,推动行业技术变革。
三相无刷电机驱动器借电子换向驱动电机,其性能优化需从多维度入手。控制算法上,矢量控制解耦电流提升动态响应,直接转矩控制简化结构减脉动;硬件设计中,功率器件选型、驱动电路设计及电源模块、散热、EMC 和传感器技术优化均为关键,各环节协同提升系统效能。
微控制器以高集成度、低功耗和可编程性,成为智能家居核心。从单品控制的基础逻辑处理,到联网控制集成无线通信模块,再到通过标准化协议实现全屋互联,同时兼具数据处理、抗干扰与故障诊断能力,推动智能家居技术落地。
在半导体技术发展下,GaN 凭高击穿电场等特性革新功率电子领域。其器件分增强型和耗尽型,主流增强型靠二维电子气工作,需栅极驱动器具高开关速度、低损耗等特性,有隔离和非隔离架构。