ROHM推出在高温高湿环境下实现业界顶级可靠性的1700V全SiC功率模块“BSM250D17P2E004”

分享到:

<概要>
全球知名半导体制造商ROHM(总部位于日本京都)面向以户外发电系统和充放电测试仪等评估装置为首的工业设备用电源的逆变器和转换器,开发出实现业界顶级可靠性的额定值保证1700V 250A的全SiC功率模块“BSM250D17P2E004”。
 
近年来,由于SiC产品的节能效果优异,以1200V耐压为主的SiC产品在汽车和工业设备等领域的应用日益广泛。随着各种应用的多功能化和高性能化发展,系统呈高电压化发展趋势,1700V耐压产品的需求日益旺盛。然而,受可靠性等因素影响,迟迟难以推出相应产品,所以1700V耐压的产品一般使用IGBT。
 
在这种背景下,ROHM推出了实现额定1700V的全SiC功率模块,新产品不仅继承了1200V耐压产品中深获好评的节能性能,还进一步提高了可靠性。
 
此次新开发的模块采用新涂覆材料和新工艺方法,成功地预防了绝缘击穿,并抑制了漏电流的增加。在高温高湿反偏试验(HV-H3TRB)中,实现了极高的可靠性,超过1,000小时也未发生绝缘击穿现象。从此,在高温高湿度环境下也可以安心地处理1700V的高耐压了。
 
另外,模块中采用了ROHM产的SiC MOSFET和SiC肖特基势垒二极管(SBD),通过优化模块内部结构,使导通电阻性能比与同等SiC产品优异10%,非常有助于应用进一步节能。
 
本模块已于2018年10月开始投入量产。前期工序的生产基地为ROHM Apollo CO., LTD.(日本福冈),后期工序的生产基地为ROHM总部工厂(日本京都)。
 
未来,ROHM不仅会继续扩充让客户安心使用的产品阵容,还会配备可轻松测试SiC模块的评估板等,以进一步满足日益扩大的市场需求。
 
1
 
<特点>
1.在高温高湿环境下确保业界顶级的可靠性
 
通过采用新涂覆材料作为芯片的保护对策,并引进新工艺方法,使新模块通过了HV-H3TRB高温高湿反偏试验,从而使1700V耐压的产品得以成功走向市场。
 
比如在高温高湿反偏试验中,比较对象IGBT模块在1,000小时以内发生了引发故障的绝缘击穿,而BSM250D17P2E004在85℃/85%的高温高湿环境下,即使施加1360V达1,000小时以上,仍然无故障,表现出极高的可靠性。
 
2
 
2.优异的导通电阻性能,有助于设备进一步节能
 
新模块中使用的是ROHM产的SiC SBD和SiC MOSFET。通过SiC SBD和SiC MOSFET的最佳组合配置,使导通电阻低于同等普通产品10%,这将非常有助于应用进一步节能。
 
3
继续阅读
储能逆变器:挑战应对与性能优化之道

储能逆变器充电电路的设计需平衡充电速度与电池保护,同时面临效率、可靠性和稳定性等挑战。为提升性能,需优化电路设计、引入先进控制算法、提升功率密度和散热性能,以及进行智能化改造。此外,关注新技术应用也是关键。综合优化这些方面,可推动电源管理系统更高效、可靠地发展。

储能逆变器技术革新技术大揭密!

储能逆变器充电电路的未来发展趋势将聚焦高效性、智能化、小型化与集成化,并强调更高的安全性和可靠性。随着能源需求增长和能源结构转型,提高能量转换效率、减少损耗成为关键。智能化发展通过引入先进控制算法和感知技术,实现电池状态实时监测和精准控制,延长电池寿命。同时,小型化和集成化将适应更多应用场景。

关注新能源——光伏并网系统的两种三电平拓扑

在工业领域中,我们经常接触到两电平逆变部分的电路拓扑,例如工业变频器、伺服驱动器和不间断电源等。然而,在光伏、风电和中高压变频器等领域,三电平电路拓扑相对较为普遍,尽管仍然存在着使用两电平拓扑的情况。下面我们将先介绍这两种三电平电路拓扑的基本原理。

ADC技术的奥秘揭示与应用探索

在现代电子设备中,模拟到数字转换器(ADC)扮演着至关重要的角色。ADC是一种能将连续的模拟信号转换为离散的数字信号的关键器件。无论是音频设备、通信系统还是工业自动化等,都离不开ADC的应用。本文将深入探讨ADC的基础知识,以及其背后的工作原理和应用领域。

ROHM电机控制和一体化分立器件解决方案

逆变器的控制技术与电机的发展一起在不断进步。从当初的异步电动机开始,到后来的永磁同步电机在家电方面得到应用,直到现在以磁阻电机为代表的内置式永磁同步电机在室内空调、冰箱、洗衣机等白色家电中成为主力电机,为节能做出了巨大贡献。想要提升节能效率,单靠电机是无法实现的,还需要与驱动相适应的矢量控制和使用了低功耗元器件的逆变器。