罗姆:带你看透电源管理IC的“进化”之路

分享到:

虽然电源管理IC不像CPU、GPU那样吸睛,但它属于一个相对稳定的市场,如果能在这一领域深耕,那也能培育自己的“一亩三分地”。毕竟,电源管理IC不可或缺。据预测,电源IC市场规模到2023年将增长至227亿美元,2018~2023年期间的复合年增长率(CAGR)将达4.6%。而一方面随着自身在提升集成度、模块化、数字化不断进阶,另一方面新型应用拉升对GaN、SiC等材料需求,为电源管理IC发展注入全新动力。

 

1

 

 

应用之变

 

对于电源管理IC来说,无论针对传统还是新兴应用,“进化”是一直以来的诉求。

 

一些偏消费类的产品如笔记本、手机及可穿戴产品,对电源管理IC的要求在于尺寸更小、功率更大,以适应小型化和快充的需求。而在数据中心及工业4.0领域,对电源管理IC提出大功率需求,则需要更高的效率和更优的EMI表现。

 

以服务器应用为例,如需实现云计算,则要求服务器处理能力更强,如何在固定空间情况下实现更大的功率,从几千瓦到30kW等等,这是电源管理IC所需要应对的。

 

值得一提的是,罗姆公司的“BD71837MWV”的电源IC电路便是根据“i.MX 8M系列”处理器的电源系统设计而成,集控制逻辑、8通道降压型DC/DC转换器(Buck Converter)、7通道LDO于一身,仅这1枚芯片,不仅可为处理器供电,还可为应用所需的DDR存储器供电。此外,还内置有SDXC卡用1.8V/3.3V开关、32.768kHz晶振缓冲器、众多保护功能(各电源系统的输出短路、输出过电压、输出过电流及热关断等)。

 

工业4.0的电源管理IC着重灵活度、效率、低EMI、安全性、可靠性等等;在自动驾驶汽车领域,关键平台主要有激光雷达、毫米波雷达等,对噪声和安全性要求很高;而在通信领域,针对即将到来的5G变革,最大的挑战就是如何提高电源转换效率。

 

而从市场需求来看,有分析称通信市场让将占据最主要的市场份额,即将到来的5G大规模布局,将进一步提升通信领域电源管理芯片需求。于此同时,汽车电气化以及工业4.0升级,也将成为电源管理芯片的助推剂。相对而言,消费类及计算方面应用需求有所降低。


 

 

模块快进

 

电源管理IC的集成化、模块化、智能化一直是前进的动力,而模块化在内外因的相互作用下正在兴起。

 

电源模块发展有两大驱动因素,一是新工艺的导入,通过将被动元器件如电感、电容、电阻等集成,使得尺寸趋小的同时将功率提升;二是封装的改进和创新,4-5年前很多封装工艺采用打线的技术,而现在则采用倒装技术,从而使得功率密度更高、EMI进一步改善。

 

这不仅赋予电源模块抗EMI性好、功率密度高、更可靠等特点,而且电源模块不仅整体尺寸变小,同时外围要求也更简单,不需更多的被动元器件,BOM的数量变少。此外,对于工程师来说产品开发会更便利,将加快上市进程。

 

而此前模块因成本偏高而市场化推进受阻的障碍也在进一步消除。随着工艺和技术的发展,电源模块与分立器件的价差已缩小,四五年前电源模块价格是分立器件的4-5倍,现在则是1.8-1.9倍。从性价比来看,工程师认为采用电源模块开发更方便,同时外围器件减少也可进一步降低成本,因而市场潜力可期。在测试测量、医疗仪器、工业自动等需要小体积、EMI优势的应用,均可采用电源模块。

 

其优势,一是EMI特性优良,因模块已集成电容,可将电流环路做到更小,从而满足众多EMI标准。二是功率密度更高。三是WEBENCH使设计变得简单,WEBENCH支持在线设计,只需将输入输出参数放到WEBENCH里,就可算出所需的电容和电阻。


 

 

GaN批量

 

在电源管理IC市场,传统“硅”材料遇到的极限在于在现有尺寸规格下,无法在所需的频率下输出更高的功率。而在诸如5G、数据中心等应用中,功率都是一个至关重要的因素。在此情形下,可在尺寸和能耗减半的条件下输送同等的功率的氮化镓(GaN)应运而生。

 

频率提高使体积减小是GaN显著的优点,因这可显著地减小变压器、电感和电容的体积。在传统的电压器设计中,600V输入一般只有100kHz频率,变压器体积会非常大,整体重量也大于650g。

 

据ROHM半导体(北京)有限公司设计中心所长水原德健介绍:“GaN是用于新一代功率元器件的半导体材料,其物理性能优异,尤其是高频特性使其在低耐压领域的应用也日益广泛。例如,将GaN功率器件搭载于车载DC-DC转换器或逆变器等电源装置时,能够大幅提高车载DC-DC转换器的功率转换效率且能够实现装置的小型化等,未来有望得到进一步普及。”

2

 

继续阅读
SiC与GaN技术在新能源浪潮下的机遇

随着新能源车(这里包括BEV/PHEV/HEV)的产销量不断增加,功率半导体的需求也直接被带动了。对于功率半导体架构的选择,效率是核心衡量点,所以SiC和GaN就具有明显的优势了。一般来说,这些新型材料的优点可以概括为高频/高压的处理能力、在降低电阻和开关损耗方面效率的改善、由于导热性提高带来的功率和电流密度提高等。

深入剖析碳化硅,了解其作用与发展

碳化硅一维纳米材料由于自身的微观形貌和晶体结构使其具备更多独特的优异性能和更加广泛的应用前景,被普遍认为有望成为第三代宽带隙半导体材料的重要组成单元。

万丈高楼平地起——GAN入门介绍

万丈高楼平地起,今日小R为大家带来一篇关于GAN的零基础入门介绍。采用“制假贩子”和“侦探”的比方讲起,形象介绍了关于GAN的概念、组成和运作机制,以及基于GAN常见热门应用方向等入门概念性知识。

干货分享——功率半导体行业研究报告

功率半导体器件(PowerSemiconductor Device)又称电力电子器件(PowerElectronicDevice)。1940年贝尔实验室在研究雷达探测整流器时,发现硅存在PN结效应,1958年美国通用电气(GE)公司研发出世界上第一个工业用普通晶闸管,标志着电力电子技术的诞生。从此功率半导体器件的研制及应用得到了飞速发展,并快速成长为电子制造业的核心器件之一,还独立成为电子电力学科。作为制造业大国,功率半导体器件在中国大陆的工业、消费、军事等领域都有着广泛应用,具有很高的战略地位。

氧化镓能挑战SiC和GaN的功率半导体霸主地位吗

目前,以碳化硅(SiC)和氮化镓(GaN)为代表的第三代化合物半导体受到的关注度越来越高,它们在未来的大功率、高温、高压应用场合将发挥传统的硅器件无法实现的作用。特别是在未来三大新兴应用领域(汽车、5G和物联网)之一的汽车方面,会有非常广阔的发展前景。