用基本的物理原理理解IGBT——并联均流不简单

分享到:

1、因为并联,所以精彩


IGBT与FRD、晶闸管等无元胞器件相比,天生就是并联的。模块封装中更是需要多芯片并联。正是因为并联,才使得IGBT器件的功率容量得以扩展。可以说,没有并联,就不是IGBT。

但是这里面就牵扯到并联均流问题。

                                                 2、芯片越大越好?


有些人感觉把IGBT芯片做大一点,一颗顶两颗,这样就可以减少封装中的并联均流问题了。事实显然没有那么简单。
首先,IGBT芯片是很多个元胞组成的,按15um的元胞宽度,方形元胞估算,1平方厘米的芯片上大约有40万个元胞。这些元胞之间本身就是并联的,也存在均流问题。芯片面积增大后,芯片内部的均流问题也需要考虑。某个元胞的热电正反馈是芯片损坏的开始。
如果芯片内部总是均流的,IGBT的电流能力将远超额定电流。做过仿真的应该注意过,对单个元胞进行仿真,随便你提高关断电压、寄生电感,元胞都是不会损坏的,而且随便一个设计都可以实现SSCM。对,就是ABB提出的那个开关自钳位模式。电压过冲达到一定值后,关断电流di/dt将因动态雪崩而下降,使VCE被钳位。
这就是均流的力量。现实中的IGBT,几乎一切与大电流相关的损坏都来自于均流问题。所以,芯片内部的均流也是非常重要的。
此外,芯片制造过程中总有缺陷,有良率问题。不管大芯片还是小芯片,都是一个致命缺陷就会失效。单芯片面积越大,良率自然越低。晶圆加工中剩余的边角料也会浪费更多。

所以,增大芯片面积,既有均流设计问题,也要考虑生产线的工艺能力和成本。

                                               3、栅电阻的等效

实际模块设计中,每个模块中可能有多个衬板,每个衬板上一般都会有一个衬板电阻。比如某1200A的模块有6个衬板,每个衬板上电阻为6欧。根据并联电阻的规律,这6个6欧的电阻,相当于模块外部接一个1欧的电阻。

事实上这两种处理是等效的吗?当然不是。因为模块布局中一定会有寄生参数,导致不同衬板与信号源之间的总阻抗不一样。引入衬板电阻后,可以减小不同衬板之间这方面的差异,改善均流问题。

同理,芯片的片上电阻与衬板电阻也是不能完全等效的。

那么芯片内部不同区块的均流问题,是不是要考虑呢?怎么处理呢?这个相信答案已经很清晰了。

均流问题包含的范畴实在太大,静态的,动态的,短路的。相对容易处理的是寄生参数导致的不均流的抑制,相对难的是芯片制造工艺的控制,还有一些从器件设计上需要考虑的。这些恐怕十篇也写不清楚。本身这个系列也是列举一些典型的点,剩下的留给有心的自己去思考了。

继续阅读
用基本的物理原理理解IGBT——并联均流不简单

IGBT与FRD、晶闸管等无元胞器件相比,天生就是并联的。模块封装中更是需要多芯片并联。正是因为并联,才使得IGBT器件的功率容量得以扩展。可以说,没有并联,就不是IGBT。 但是这里面就牵扯到并联均流问题。

解析如何清除IGBT寄生米勒效应电容问题

米勒效应所产生的电容和峰值问题在日常工作中,属于一种比较常见的情况。在IGBT模块操作中,如果没有及时处理米勒电容问题,很容造成IGBT损坏。那么,寄生米勒电容有哪些危害?工程师应该如何快速的清除IGBT寄生米勒电容问题呢?就让我们通过下文进行详细的分析和介绍。

IGBT 的工作原理是什么?

IGBT 的等效电路如图1 所示。由图1 可知,若在IGBT 的栅极和发射极之间加上驱动正电压,则MOSFET 导通,这样PNP 晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT 的栅极和发射极之间电压为0V,则MOSFET 截止,切断PNP 晶体管基极电流的供给,使得晶体管截止。

工业电机驱动中的IGBT过流和短路保护问题

工业电机驱动的整个市场趋势是对更高效率以及可靠性和稳定性的要求不断提高。功率半导体器件制造商不断在导通损耗和开关时间上寻求突破。有关增加绝缘栅极双极性晶体管(IGBT)导通损耗的一些权衡取舍是:更高的短路电流电平、更小的芯片尺寸,以及更低的热容量和短路耐受时间。这凸显了栅极驱动器电路以及过流检测和保护功能的重要性。本文讨论现代工业电机驱动中成功可靠地实现短路保护的问题。

新能源汽车的“最强大脑”IGBT“究竟有什么用?

目前,新能源汽车越来越普遍,对比常规汽车的三大件,新能源汽车也有电池、电控、电机这三大件,可新能源汽车只看这三大件还不行,还必须考虑一个不常听说的关键部件IGBT,它号称新能源汽车的“最强大脑”。下面我们就来看看这个最强大脑有哪些作用?