新增SiC和IGBT模型,罗姆官网可提供超过3,500种LTspice®模型

分享到:

全球知名半导体制造商罗姆(总部位于日本京都)扩大了支持电路仿真工具*1 LTspice®的SPICE模型*2阵容。LTspice®具有电路图捕获和波形查看器功能,可以提前确认和验证电路是否按设计预期工作。此前罗姆已经陆续提供了双极晶体管、二极管和MOSFET*3的LTspice模型,此次又新增了SiC功率元器件和IGBT*4等的LTspice模型。至此,罗姆已经提供超过3,500 种分立产品的LTspice®模型,这些模型从各产品页面均可下载。目前,罗姆官网上发布的产品所对应的LTspice®模型覆盖率已超过80%,有助于客户利用嵌入了功率元器件等分立产品的电路仿真工具来提高设计便利性。

1

另外,除了产品页面外,罗姆官网自2023年10月起还开设了可以浏览所有仿真模型的“设计模型”页面,在这里可以轻松下载各种模型。此外,还一并提供添加库和创建符号(电路图符号)的指南文档等,有助于客户顺利创建电路和执行仿真。

未来,罗姆将继续扩大支持各种仿真工具的模型阵容,通过提供满足客户需求的在线工具和资源(例如已经发布的“ROHM Solution Simulator*5”),助力解决客户在电路设计过程中的问题。

2

<背景>

近年来,在电路设计中使用电路仿真的机会越来越多,可用的工具也多种多样。其中,LTspice®是具有代表性的电路仿真工具之一,其用户包括从学生到企业工程师的广大群体。为了满足众多用户的需求,罗姆进一步扩充了支持LTspice®的分立产品模型阵容。

本文转自罗姆官网

继续阅读
PIN二极管:技术挑战与性能优化之道

PIN二极管作为关键的微波半导体器件,其性能提升涉及多个方面。首先,精确控制I层的掺杂浓度和分布是关键,需严格把控材料选择、切割、清洗、扩散、退火等制造过程的工艺稳定性。其次,优化PIN二极管的温度特性、高频性能以及集成化水平也是技术挑战。

PIN二极管:原理揭秘与多元应用场景探索

PIN二极管是一种特殊半导体器件,由P-I-N三层结构组成,具有高阻抗和低噪声特性。其I层在施加不同直流电压时,载流子数量变化影响阻抗状态,可用于微波信号的通断控制。PIN光电二极管在高速通信和传感系统中发挥关键作用,如光信号响应和安防系统应用。

变频电机与普通电机:应用与发展全景解析

变频电机通过改变供电频率实现调速,具有调速范围广、精度高等优点,在工业自动化、风力发电等领域应用广泛。普通电机则固定转速,结构简单且经济,适用于恒速运转和成本敏感场合。国内变频电机发展迅速,但与国际先进水平在可靠性等方面仍有差距;普通电机发展平稳,面临能效和环保挑战。

电机技术革新:变频与普通电机的进击之路

变频电机通过变频器实现转速连续可调,提升变频器性能是提升变频电机性能的关键。优化变频电机设计和选用高性能材料可提升整体性能。普通电机在控制方式和节能性能上存在局限,而变频电机具有更高控制精度和能源利用效率。随着工业自动化和绿色环保理念的深入,变频电机将迎来更广阔的发展空间,实现智能化和与其他设备的集成,提高设备可靠性和降低生产成本。

变频电机VS普通电机:原理特点全解析

变频电机与普通电机在原理和结构上有显著区别。普通电机基于电磁感应和电磁力工作,具有固定转速和功率。而变频电机采用变频技术,通过变频器调整电流频率控制转速,实现灵活调整以适应不同负载需求。结构上,变频电机包含变频器和控制系统,定子设计更复杂以提高能效。