搜索
热搜: ROHM 模拟 车载
查看: 2292|回复: 3

[分享] 三大动力电池技术,谁可笑到最后(中)

  [复制链接]

该用户从未签到

43

主题

73

帖子

0

精华

高级会员

最后登录
2021-12-28
发表于 2018-10-8 14:11:24 | 显示全部楼层 |阅读模式
为什么一定是固态电池
1、不燃烧,根除安全隐患

固态电池是采用固态电解质的锂离子电池。 工作原理上,固态锂电池和传统的锂电池并无区别:传统的液态锂电池被称为“摇椅式电池”,摇椅的两端为电池的正负两极,中间为液态电解质,锂离子在电解液中迁移来完成正负极间的穿梭实现充放电,而固态电池的电解质为固态,相当于锂离子迁移的场所转到了固态的电解质中。 固态电解质是固态电池的核心。

固态电解质不可燃烧,极大提高电池安全性。 与传统锂电池相比,全固态电池最突出的优点是安全性。固态电池具有不可燃、耐高温、无腐蚀、不挥发的特性,避免了传统锂离子电池中的电解液泄露、电极短路等现象,降低了电池组对于温度的敏感性,根除安全隐患。同时,固态电解质的绝缘性使得其良好地将电池正极与负极阻隔,避免正负极接触产生短路的同时能充当隔膜的功能。
QQ截图20181008140508.jpg
▲固态电解质是固态电池的核心

2、兼容高容量正负极+轻量化电池系统,推动能量密度大飞跃
更宽的电化学窗口,更易搭载高电压正极材料:提高正极材料容量需要充电至高电压以便脱出更多的锂,目前针对钴酸锂的电解质溶液可以充电到 4.45 V,三元材料可以充电到 4.35 V,继续充到更高电压, 液态电解液会被氧化,正极表面也会发生不可逆相变,三元 811 电池的推广目前便受到了耐高压电解液的制约。而固态电解质的电化学窗口更宽,可达到 5 V,更加适应于高电压型电极材料。随着正极材料的持续升级,固态电解质能够做出较好的适配, 有利于提升电池系统的能量密度

兼容金属锂负极,提升能量密度上限:高容量与高电压的特性,让金属锂成为继石墨与硅负极之后的“最终负极”。 为了实现更高的能量密度目标,以金属锂为负极的电池体系已成为必然选择。因为: (1)锂金属的克容量为 3860mAh/g,约为石墨(372mAh/g)的 10 倍,(2) 金属锂是自然界电化学势最低的材料,为-3.04V。同时其本身就是锂源,正极材料选择面更宽,可以是含锂或不含锂的嵌入化合物,也可以是硫或硫化物甚至空气,分别对应能量密度更高的锂硫和锂空电池,理论能量密度接近当前电池的 10 倍。
QQ截图20181008140520.jpg
▲锂金属是负极材料的最终形态
QQ截图20181008140527.jpg
▲锂金属负极体系能量密度远超传统锂电

锂金属负极在当前传统液态电池体系难以实现。 锂金属电池的研究最早可追溯到上世纪 60 年代,并在 20 世纪 70年代已成功开发应用于一次电池。而在可充放电池领域,金属锂负极在液态电池中存在一系列技术问题至今仍缺乏有效的解决方法,比如金属锂与液态电解质界面副反应多、 SEI 膜分布不均匀且不稳定导致循环寿命差,金属锂的不均匀沉积和溶解导致锂枝晶和孔洞的不均匀形成。
QQ截图20181008140536.jpg
▲锂金属负极在液态电池中存在的应用难题

固态电解质在解决锂金属负极应用问题上被科学界寄予厚望。 研究者把解决金属锂负极的应用问题寄希望于固态电解质的使用,主要思路是避免液体电解质中持续发生的副反应,同时利用固体电解质的力学与电学特性抑制锂枝晶的形成。此外,由于固态电解质将正极与负极材料隔离开,不会产生锂枝晶刺破隔膜的短路效应。总而言之, 固态电解质对于锂金属负极拥有更好的兼容性,锂金属材料将在固态电池平台上率先应用。
QQ截图20181008140547.jpg
▲固态电解质在锂金属负极应用上的优势
QQ截图20181008140558.jpg
▲固态电解质对锂金属负极兼容性更好

减轻系统重量,能量密度进一步提升。固态电池系统重量减少进一步提升能量密度。 动力电池系统需要先生产单体,单体封装完成后将单体之间进行串联组装。若先在单体内部进行串联,则会导致正负极短路与自放电。固态电池电芯内部不含液体,可实现先串并联后组装,减少了组装壳体用料, PACK 设计大幅简化。此外,由于彻底的安全特性, BMS 等温控组件将得以省去,并可通过无隔膜设计进一步为电池系统“减负”。
QQ截图20181008140608.jpg
▲固态电池封装更加灵活

3、固态电池是最有希望率先产业化的下一代电池技术

固态电池体系革命更小。 锂硫电池、锂空气等体系需更换整个电池结构框架,难题更多也更大,而固态电池主要在于电解液的革新,正极与负极可继续沿用当前体系,实现难度相对小。锂金属负极兼容,通过固态电解质实现。 锂硫、锂空气均需采用锂金属负极,而锂金属负极更易在固态电解质平台实现。固态电池作为距离我们最近的下一代电池技术已成为科学界与产业界的共识,是后锂电时代的必经之路。
QQ截图20181008140616.jpg
▲固态电池是动力电池必经之路

固态电池距离我们还有多远
1、高阻抗、低倍率的核心难题

当前固态电解质体相离子电导率远低于液态电解质的水平,往往相差多个数量级。 按照材料的选择,固态电解质可以分为聚合物、氧化物、硫化物三种体系,而无论哪一种类别,均无法回避离子传导的问题。电解质的功能在于电池充放电过程中为锂离子在正负极之间搭建锂离子传输通道来实现电池内部电流的导通,决定锂离子运输顺畅情况的指标被称为离子电导率,低的离子电导率意味着电解质差的导锂能力,使锂离子不能顺利在电池正负极之间运动。聚合物体系的室温电导率约 10-7-10-5S/cm,氧化物体系室温下电导率为 10-6-10-3S/cm,硫化物体系电导率最高,室温约 10-3-10-2S/cm,而传统液态电解质的室温离子电导率为 10-2S/cm 左右, 比任意固态电解质类型的离子电导率都要高。
QQ截图20181008140630.jpg
▲固态电解质离子电导率低于液态电解质
QQ截图20181008140639.jpg
▲三大体系固态电解质离子电导率高低顺序

此外, 固态电解质拥有高界面阻抗。 在电极与电解质界面上,传统液态电解质与正、负极的接触方式为液/固接触,界面润湿性良好,界面之间不会产生大的阻抗,相比较之下,固态电解质与正负极之间以固/固界面的方式接触,接触面积小,与极片的接触紧密性较差,界面阻抗较高,锂离子在界面之间的传输受阻。
QQ截图20181008140649.jpg
▲固态电解质界面阻抗高于传统液态电解质

低离子电导率与高界面阻抗导致了固态电池的高内阻, 锂离子在电池内部传输效率低,在高倍率大电流下的运动能力更差,直接影响电池的能量密度与功率密度。

2、三大技术路线产业化进展
固态电池的三大体系各有优势,其中聚合物电解质属于有机电解质,氧化物与硫化物属于无机陶瓷电解质。纵览全球固态电池企业,有初创公司,也不乏国际厂商,企业之间独踞山头信仰不同的电解质体系,未出现技术流动或融合的态势。欧美企业偏好氧化物与聚合物体系,而日韩企业则更多致力于解决硫化物体系的产业化难题,其中以丰田、三星等巨头为代表。
QQ截图20181008140702.jpg
▲全球固态电池企业在技术路线

聚合物体系:率先小规模量产,技术最成熟,性能上限低。聚合物体系属于有机固态电解质,主要由聚合物基体与锂盐构成,量产的聚合物固态电池材料体系主要为聚环氧乙烷(PEO) -LiTFSI(LiFSI),该类电解质的优点是高温离子电导率高,易于加工,电极界面阻抗可控。因此成为最先实现产业化的技术方向。但其室温离子电导率为三大体系中最低,严重制约了该类型电解质的发展。电导率过低+低容量正极意味着该材料的较低的能量与功率密度上限。 在室温下,过低的离子电导率(10-5S/cm 或更低)使离子难以在内部迁移,在 50~80℃的环境下利用才勉强接近可以实用化的 10-3S/cm。此外, PEO 材料的氧化电压为 3.8V,难以适配除磷酸铁锂以外的高能量密度正极,因此,聚合物基锂金属电池很难超过 300Wh/kg 的能量密度。
QQ截图20181008140712.jpg
▲聚合物体系研发机构

法国博洛雷公司率先将此类固态电池商业化。 2011 年 12 月其生产的以 30kwh 固态聚合物电池+双电层电容器为动力系统的电动车驶入共享汽车市场,这也是世界上首次用于 EV 的商业化固态电池。据资料显示,该公司共投入约 2900辆 EV,设立了约 900 座服务站和约 4500 台充电器,服务用户合计达到 18 万人以上,其中近 4 成的约 7 万人为活跃用户,每天的利用次数约为 1.8 万次。该产品为后来者提供了参考与指导,但并不具备商业价值。 博洛雷公司的聚合物固态电池采用了 Li-PEO-LFP 的材料体系,能量密度为 110Wh/kg,对比传统电池系统没有密度优势。由于聚合物电解质在室温下难以工作,博洛雷为此电池系统搭配了 200W 的加热器,发动前需通过加热元件将电池系统升至 60-80℃。而在面对长时间停车时,加热器也需要一直处于工作状态,停车时需要连接充电器。加热器的存在,增加能耗,对电池包壳体设计增加了诸多限制,安全性也有待考究。此外,由于聚合物体系功率密度低,应对紧急起步、紧急加速等场景需配载双电层电容器弥补输出。
QQ截图20181008140723.jpg
▲博洛雷生产的固态电池汽车的局限

聚合物体系可卷对卷生产, 量产能力最好。 由于聚合物薄膜拥有弹性和粘性,博洛雷与 SEEO 公司的电解质均可由卷对卷的方式量产。卷对卷印刷技术在薄膜太阳能电池、印刷等领域已有较广泛应用,其技术相对成熟,成本低廉。因此, 聚合物体系是当前量产能力最强固态电池。与无机固态电解质复合是潜在的发展方向。 将聚合物体系与其他无机固态电解质体系复合能改善聚合物体系的电导率,并能较好结合两者优势,实现“刚柔并济。
QQ截图20181008140733.jpg
▲公司的卷对卷固态电池产线

氧化物体系: 分为薄膜型与非薄膜型,薄膜型适用于微型电子, 非薄膜型综合性能优异。对比有机固态电解质,无机固态电解质包括氧化物体系与硫化物体系,无机材料的锂离子电导率在室温下要更高,但电极之间的界面电阻往往高于聚合物体系。 其中氧化物体系开发进展更快,已有产品投入市场。氧化物体系主要分为薄膜型与非薄膜型两大类。 薄膜型主要采用 LiPON 这种非晶态氧化物作为电解质材料,电池往往薄膜化;而非薄膜型则指除 LiPON 以外的晶态氧化物电解质,包括 LLZO、 LATP、 LLTO 等,其中 LLZO 是当前的热门材料,综合性能优异。
QQ截图20181008140751.jpg
▲氧化物体系研发机构

薄膜型产品性能较好,但扩容困难。 锂离子的流动与电流一样,遵循某种“欧姆定律”,如果传导距离缩短,则可以减小电阻值, 通过使电解质层变薄可以在一定程度上弥补低离子传导率。除了 LiPON 等少数几种固体电解质,大多数材料难以制备成薄膜。已经小批量生产的以无定形 LiPON 为电解质的氧化物薄膜电池,在电解质层较薄时( ≤2μm ),面电阻可以控制在 50~100 Ωcm2。同时薄膜化的电池片电池倍率性能及循环性能优异,可以在 50C 下工作, 循环 45000 次后,容量保持率达 95%以上。 但是薄膜化带来较好性能的同时也面对着扩充电池容量的困境。单体薄膜电池的容量很小,往往不到 mAh 级别,在微型电子、 消费电子领域勉强够用, 可对于 Ah 级别的电动车领域则需要串并联大量的薄膜电池来增加电池组容量,工艺困难且造价不菲。从涂布到真空镀膜, 薄膜型产品多采用真空镀膜法生产。 由于涂布法无法控制粒子的粒径与膜厚,成膜的均匀性比较低,真空镀膜法能够较好保持电解质的均匀性。但是真空镀膜的生产效率低下,成本高昂,不利于大规模生产。为了改善材料与电极的界面阻抗,目前为止的应对措施是通过在 1000℃以上的高温下烧结电极材料来增加界面的接触面积,对工艺要求较苛刻。 薄膜型氧化物固态电池厂家 Sakti3 于 2015 年被英国家电巨头戴森收购, 可受制于薄膜制备的成本与规模化生产难度大,迟迟没有量产产品。
QQ截图20181008140810.jpg
▲真空镀膜法的特点
QQ截图20181008140822.jpg

回复

使用道具 举报

该用户从未签到

1153

主题

5959

帖子

0

精华

论坛元老

最后登录
2021-2-19
发表于 2018-10-8 15:15:40 | 显示全部楼层
欣赏一下
回复

使用道具 举报

该用户从未签到

49

主题

2250

帖子

0

精华

论坛元老

最后登录
2020-12-15
发表于 2018-10-9 08:54:25 | 显示全部楼层
感谢分享                        
回复 支持 反对

使用道具 举报

该用户从未签到

2248

主题

1万

帖子

1

精华

论坛元老

最后登录
2024-5-2
发表于 2018-10-9 10:00:09 | 显示全部楼层
不错的资料
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 注册/登录

本版积分规则

关闭

站长推荐上一条 /2 下一条

Archiver|手机版|小黑屋|罗姆半导体技术社区

GMT+8, 2024-5-4 00:43 , Processed in 0.112315 second(s), 16 queries , MemCache On.

Powered by Discuz! X3.4

Copyright © 2001-2024, Tencent Cloud.

快速回复 返回顶部 返回列表