罗姆所倡导的SiC技术有何妙处?

分享到:

近年来,随着技术的不断发展,全球对电力的需求逐年增加。但同时,这也造成了化石燃料的逐渐枯竭,并带来了环境恶化,气候变暖等问题。如何有效的利用电力成为亟待解决的难题。
作为全球知名的半导体厂商,罗姆向市场推出了一系列有助于节能、减排的产品,如以低功耗、高效转换率IC为首的高集成电路、无源器件等等,其中SiC 功率元器件作为新一代“环保元器件”受到了业界的瞩目。
 
SiC功率半导体诞生于四十六亿年的陨石中,数量极为稀少,作为半导体,它具有极其优秀的性能。有报告称,2016 至 2022 年间,有望实现 6% 的复合年增长率。而且,新应用的出现也将推动碳化硅电力电子器件市场的发展。也就是说,2022 年,碳化硅器件市场总值将超过 10 亿美元。事实上,2020 年之后,市场发展的脚步将进一步加快,2020 至 2022 年间,有望实现 40% 的复合年增长率。
 
虽然SiC 可以通过人工制成,但加工过程却极其困难,因此sic功率元器件如何量产一直是业界的难题。罗姆在这方面已经拥有近30年经验,2012年3月就开始了“全SiC ”功率模块的量产。
 
在2019年MWC上,罗姆向记者展示了面向工业设备和汽车领域的、以世界先进的SiC(碳化硅)元器件为核心的电源解决方案,同时还展示了罗姆最新的碳化硅技术。
 
配图3
                             罗姆展位活动现场
 
在场的工作人员首先向记者展示了目前在场的所有SiC 阵容,同时介绍道,罗姆的SiC 产品分成三类,二极管,mos管以及功率模块。罗姆除了具体的产品以外,生产体制也非常有特色,遵循IDM(整合组件制造商)生产体制,从SiC 的晶圆开始到封装,都自行完成,可以给客户提供长期稳定,高品质的供货。
 
配图4
 
汽车领域内,电动汽车是罗姆的增长点,这是由于汽车电气化而增加了对电子元件的需求。罗姆为车载设备提供了内置绝缘元件的栅极驱动器,搭载SiC Trench的SkW绝缘双向DC\DC转换器,搭载ROHM SiC6合1封装的车载模块驱动以及SiC MOSFET
 
作为参加“FIA电动方程式锦标赛”的Venturi电动方程式车队的官方技术合作伙伴,为其赛车核心驱动部件逆变器提供技术支持,为其提供全球先进的SiC功率器件。第3赛季提供了二极管(SiC-SBD),而从第4赛季开始,则提供集成了晶体管与二极管的“全SiC”功率模块。与未搭载SiC的第2赛季的逆变器相比,第4赛季的逆变器在重量上共减少了6kg,体积上减少了43%。罗姆还为赛车的小型化、轻型化和高效化提供了技术支持。而在第四赛季(2017/2018)中,罗姆提供的功率模块采用了ROHM独有的模块内部结构与优化了散热设计的全新封装,成功提高了额定电流,另因开关损耗的降低,有助于节能化和冷却系统的小型化。
 
同时在工业设备方面,罗姆也带来了功能强大的诸多产品。比如主要应用于辅助电源的1700V高耐压SiC MOSFET,在大功率(高电压×大电流)逆变器和伺服等工业设备中日益广泛应用的SiC MOSFET驱动用准谐振AC/DC转换器控制IC,以及沟槽式SiC MOSFET,与上一代相比同一芯片尺寸的导通电阻可降低50%,这将大幅降低太阳能发电用功率调节器和工业设备用电源、工业用逆变器等所有相关设备的功率损耗。同时会上还展示了运动控制用FA逆变器/AC伺服方框图等等。
 
工作人员着重介绍了罗姆的最新款SiC产品-1700\250A高耐压“全SiC”功率模块,由田村配套驱动板,拥有高可靠性以及低开关损耗的特性,与同类型产品相比,拥有低导通电阻的优点。用于高电压脉冲电源,直流电网等。
 
配图5
 
本次展会上,罗姆还展出了最先进的6英寸SiC 晶圆,据介绍,罗姆于2009年收购了世界级的碳化硅晶片制造商——德国SiCrystal晶圆制造公司以后,就成为了全球第一家量产碳化硅功率器件的厂家。这款晶圆在目前世界上都属于十分先进的产品。
 
配图6
 
近年来,罗姆在工业市场上凭借高品质、高可靠性的IC、分立元器件以及长期稳定供应,支持着工业设备的进一步技术革新。
 
对于中国市场高速发展的工业、汽车领域所产生的技术需求,罗姆已经做好了充足的准备,通过自身积累的世界先进SiC核心功率元器件技术以及相关的解决方案,在未来的市场环境中占得先机。
 
虽然SiC因价格等问题目前并未被广泛使用,但据预计,SiC在EV市场的采用趋势会加大SiC功率半导体的市场规模。罗姆将加速投资,提升SiC功率器件和SiC晶圆的产能。它预期汽车及工业领域对碳化硅的需求将大幅增加。
 
以引领世界的SiC元器件为核心,罗姆致力于提供完整的大功率电源解决方案。
 
继续阅读
碳化硅晶圆:特性与制造,一步了解

碳化硅晶圆的制造流程涉及前驱体净化处理、高温高压下的化学反应生成固态碳化硅、定向生长以及后续加工等关键步骤。这些步骤共同确保了碳化硅晶圆的高品质制造。碳化硅晶圆因其高硬度、出色的耐磨性、高温稳定性、优异的电学性能、良好的透光性和抗辐射能力,在半导体和电子器件领域具有广泛应用前景。

碳化硅晶圆类型与检测场景速览

碳化硅晶圆在电子工业中占据重要地位,其宽带隙、高机械强度和高导热性使其成为硅基半导体的理想替代材料。其中,4H-SiC和6H-SiC是最常见的碳化硅单晶类型,前者在微电子领域应用广泛,后者更适用于光电子领域。碳化硅晶圆可根据杂质含量、晶格缺陷密度和表面质量等分为不同等级,如N型半绝缘体(SI)晶圆和低杂质(LD)晶圆等。

揭秘碳化硅晶圆蚀刻:技术与原理全解析

蚀刻碳化硅晶圆是一项涉及复杂物理和化学作用的技术。蚀刻过程通过产生包含活性自由基的等离子体来实现,这些自由基与碳化硅表面材料发生化学反应,实现化学刻蚀。同时,正离子的物理轰击作用辅助化学刻蚀过程。为确保蚀刻的精确性和可重复性,需优化蚀刻条件如等离子体密度、自由基浓度和离子能量。

碳化硅比热容:技术现状与未来发展方向探析

碳化硅(SiC)的比热容是其关键物理性质,随温度变化而展现独特优势,尤其在高温应用中。当前,通过实验测定和理论计算,科学家们已对碳化硅的比热容进行了深入研究,揭示了其随温度升高的增大趋势及受纯度、晶粒大小、制备工艺影响的规律。

MOS管过流保护:技术难点与保护原理深探

MOS管过流保护的核心原理是通过监测负载电流,并在电流超过设定阈值时切断MOS管的导通状态,以防止电路受损。实现这一保护的关键在于使用过流检测电阻和比较器来检测和控制电流。在实际应用中,还需考虑SOA等辅助电路以增强保护效果。